K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2017

Bài 1 xét hai tam giác AHB và tam giác AHC có:

AC= AB (cân)

AH là cạnh chung

góc ABH= gó ACH 

=> hai tam giác bằng nhau theo trường hợp cạnh huyền góc nhọn

bài 2 

a) ta có tam giác ABC cân 

và AH là đường cao => AH cũng là đường trung tuyến của tam giác ABC

hoặc dùng kết quả 2 tam giác bằng nhau ở câu 1 để suy ra cũng dc

b)từ kết quả baì 1  suy ra hai góc bằng nhau

ta có tam giác ABH vuông tại H

HB=HC+1/2BC=5

sử dụng pytago

AH2  = AB2- BH2

22 tháng 1 2022

Bạn tự vẽ hình nhá.

a, Vì tam giác ABC cân tại A nên AB = AC và \(\widehat{ABC}=\widehat{ACB}\)

Xét tam giác AHB vuông tại H và tam giác AHC vuông tại H , có:

AB = AC (gt)

AH là cạnh chung

=> Tam giác AHB = Tam giác AHC ( cạnh huyền - cạnh góc vuông )

b, Vì Tam giác AHB = Tam giác AHC nên HB = HC ( hai cạnh tương ứng )

                                                                và \(\widehat{BAH}=\widehat{CAH}\) ( hai góc tương ứng )

c, Vì Tam giác AHB = Tam giác AHC nên \(\widehat{ABH}=\widehat{ACH}\) hay \(\widehat{KBH}=\widehat{ICH}\)

Xét tam giác HKB vuông tại K và tam giác HIC vuông tại I, có:

HB = HC ( cmt )

\(\widehat{KBH}=\widehat{ICH}\)

=> Tam giác HKB = Tam giác HIC ( cạnh huyền - góc nhọn )

22 tháng 1 2022

cảm ơn bạn nhé

7 tháng 3 2017

A B C (*) Tam giác ABC cân tại A H

a, HB = HC:

Xét ΔABH và ΔACH có:

+ AH là cạnh chung

+ \(\widehat{H_1}=\widehat{H_2}=90^o\) (kẻ vuông góc)

+ AB = AC (ΔABC cân tại A)

=> ΔABH = ΔACH (cạnh huyền - cạnh góc vuông)

=> HB = HC (2 cạnh tương ứng)

b, \(\widehat{BAH}=\widehat{CAH}\):

Ta có: ΔABH = ΔACH (câu a)

=> \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)

c, AH = ... cm

Ta có: H nằm giữa đường thẳng BC

=> BC = BH + HC

mà BH = HC (cm câu a)

=> BC = 2HC

mà BC = 10 cm (đề cho)

=> 10 cm = 2HC

=> HC = 5 cm.

Ta có: ΔABH vuông tại H

Áp dụng định lí PITAGO vào ΔABH:

=> AB2 = AH2 + BH2

=> AH2 = AB2 - BH2

=> AH2 = 132 - 52

=> AH2 = 144

=> AH = \(\sqrt{144}=12\left(cm\right)\)

7 tháng 3 2017

Bài 1:

A B C *: Tam giác ABC cân tại A H 1 2

Xét ΔABH và ΔACH có:

+ AH là cạnh chung

+ \(\widehat{H_1}=\widehat{H_2}=90^o\) (kẻ vuông góc)

+ AB = AC (ΔABC cân tại A)

=> ΔABH = ΔACH (cạnh huyền - cạnh góc vuông)

25 tháng 8 2016

A B C H

a) Xét hai tam giác vuông ABH và ACH

có:+AB=AC( \(\Delta ABC\) cân tại A)

      +AH: cạnh chung

Vậy \(\Delta ABH=\Delta ACH\left(ch-cgv\right)\)

=> HB=HC(  hai cạnh tương ứng)

b) Vì \(\Delta ABH=\Delta ACH\left(cmt\right)\)

nên: góc BAH=góc CAH( hai góc tương ứng)

hihi ^..^ vui^_^

25 tháng 8 2016

A B C H

a) Xét \(\Delta\nu ABH\) và \(\Delta\nu ACH\) có :

   \(AB=AC\left(gt\right)\)

   \(AH\) là cạnh chung

 Do đó : \(\Delta\nu ABH=\Delta\nu ACH\left(ch-gn\right)\)

\(\Rightarrow HB=HC\) ( vì hai cạnh tương ứng )

b )  Vì : \(\Delta\nu ABH=\Delta\nu ACH\)

\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)

 

18 tháng 2 2017

Xét 2 tam giác ΔAHB và ΔAHC có:
cạnh AH chung 
AHB^=AHC^=90∘ (do AH ⊥ BC)
AB=AC 
suy ra ΔAHB=ΔAHC (cạnh huyền- cạnh góc vuông)
⇒BH=CH và BAH^=CAH^
 

a) Hai tam giác vuông ABH và ACH có:

AB=AC(gt)

AH cạnh chung.

Nên ∆ABH=∆ACH(Cạnh huyền-cạnh góc vuông)

Suy ra HB=HC

b)∆ABH=∆ACH(Câu a)

Suy ra ^BAH=^CAH(Hai góc tương ứng)



20 tháng 4 2017

a) Hai tam giác vuông ABH và ACH có:

AB=AC(gt)

AH cạnh chung.

Nên ∆ABH=∆ACH(Cạnh huyền-cạnh góc vuông)

Suy ra HB=HC

b)∆ABH=∆ACH(Câu a)

Suy ra ˆBAHBAH^=ˆCAHCAH^(Hai góc tương ứng)



Xem thêm tại: http://loigiaihay.com/bai-63-trang-136-sach-giao-khoa-toan-7-tap-1-c42a5157.html#ixzz4envied4H

a) Hai tam giác vuông ABH và ACH có:

AB=AC(gt)

AH cạnh chung.

Nên ∆ABH=∆ACH(Cạnh huyền-cạnh góc vuông)

Suy ra HB=HC

b)∆ABH=∆ACH(Câu a)

Suy ra ˆBAH^=ˆCAH(Hai góc tương ứng)