K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

Hình bạn tự vẽ nha!

Bài 3:

a) Xét \(\Delta ABC\) có:

\(AB=AC\left(gt\right)\)

=> \(\Delta ABC\) cân tại \(A.\)

=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân)

b) Vì \(BM=CN\left(gt\right).\)

=> \(BM+BC=BC+CN\)

=> \(MC=BN.\)

Xét 2 \(\Delta\) \(ABN\)\(ACM\) có:

\(AB=AC\left(gt\right)\)

\(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)

\(BN=CM\left(cmt\right)\)

=> \(\Delta ABN=\Delta ACM\) (c . g . c)

=> \(AN=AM\) (2 cạnh tương ứng).

c) Theo câu b) ta có \(AN=AM.\)

=> \(\Delta AMN\) cân tại \(A.\)

=> \(\widehat{M}=\widehat{N}\) (tính chất tam giác cân).

Xét 2 \(\Delta\) vuông \(EBM\)\(FCN\) có:

\(\widehat{MEB}=\widehat{CFN}=90^0\left(gt\right)\)

\(\widehat{M}=\widehat{N}\left(cmt\right)\)

\(BM=CN\left(gt\right)\)

=> \(\Delta EBM=\Delta FCN\) (cạnh huyền - góc nhọn)

=> \(BE=CF\) (2 cạnh tương ứng).

=> \(ME=NF\) (2 cạnh tương ứng).

d) Đề là chứng minh \(AE=AF.\)

Ta có: \(\left\{{}\begin{matrix}AM=AN\left(cmt\right)\\ME=NF\left(cmt\right)\end{matrix}\right.\)

=> \(AM-ME=AN-NF.\)

=> \(AE=AF\left(đpcm\right).\)

Mình chỉ nghĩ thêm câu d) thôi nhé.

Chúc bạn học tốt!

Bài 1 :

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{z}=\frac{x+y+z}{y+z+x}=1\) ( Do \(x+y+z\ne0\) )

\(\Rightarrow x=y=z\)

Thay \(y\)\(z\) bởi \(x\) ta được :

\(\frac{x^{3333}.z^{6666}}{y^{9999}}=\frac{x^{3333}.x^{6666}}{x^{9999}}=\frac{x^{9999}}{x^{9999}}=1\)

Vậy : \(\frac{x^{3333}.z^{6666}}{y^{9999}}=1\)

giúp ik mn

Gọi H là trung điểm của BC. Trên tia đối của tia AM lấy K sao cho AM=MK

Xét \(\Delta AMN\)và \(\Delta KMB\)\(\hept{\begin{cases}AM=MK\\\widehat{AMN}=\widehat{KMB}\\MB=MN\end{cases}}\)

\(\Rightarrow\Delta AMN=\Delta KMB\left(c.g.c\right)\)

\(\Rightarrow\widehat{MAN}=\widehat{MKB}\)

\(\Rightarrow AN=BK=AM\)

mà \(AB>AM\Rightarrow AB>BK\)

\(\Rightarrow\widehat{BKA}>\widehat{BAK}\)

\(\Rightarrow\widehat{MAN}>\widehat{BAM}\)

8 tháng 2 2020

A B C M N D

Trên tia đồi  của tia MA lấy điểm D sao cho: MA=MD

Ta có tam giác ABC cân tại A nên:\(\widehat{ACB}=\widehat{ABC}\text{ mà:}\widehat{ANM}>\widehat{ACN}\left(\text{góc ngoài}\right)\Rightarrow\widehat{ANM}>\widehat{ABN}\Rightarrow AN< AB\)

mặt khác:

\(\Delta AMN=\Delta DMB\left(c.g.c\right)\Rightarrow AN=BD< AB\Rightarrow\widehat{BAM}>\widehat{BDM};\widehat{MAN}=\widehat{BDM}< \widehat{BAM}\)

Cho góc nhọn xOy.  Trên tia Ox lấy 2 điểm A , B ( OA < OB)  . Trên tia Oy lấy 2 điểm C , D sao cho OC = OB, OD = OB . Gọi I là trung điểm của AD và BC a,...
Đọc tiếp

Cho góc nhọn xOy.  Trên tia Ox lấy 2 điểm A , B ( OA < OB)  . Trên tia Oy lấy 2 điểm C , D sao cho OC = OB, OD = OB . Gọi I là trung điểm của AD và BC 

a, C/m \(\Delta\) OAD = \(\Delta\) OCB 

b ,C/m OI là tia phân giác của \(\widehat{ }\)góc xOy 

c , C/m AC song song BD 

0