Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Xét ΔABC có \(\widehat{B}>\widehat{C}\)
nên AB<AC
b: Xét ΔAOC có \(\widehat{AOC}>90^0\)
nên AC là cạnh lớn nhất
=>AC>AO
c: Xét tứ giác ABDC có
O là trung điểm của AD
O là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AC=BD và CD=AB
=>AC>CD
=>\(\widehat{CDA}>\widehat{CAD}\)
d: Ta có: ABDC là hình bình hành
nên BD//AC
Bài 2:
a: Xét ΔABC có \(\widehat{B}>\widehat{C}\)
nên AB<AC
b: Xét ΔAOC có \(\widehat{AOC}>90^0\)
nên AC là cạnh lớn nhất
=>AC>AO
c: Xét tứ giác ABDC có
O là trung điểm của AD
O là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AC=BD và CD=AB
=>AC>CD
=>\(\widehat{CDA}>\widehat{CAD}\)
d: Ta có: ABDC là hình bình hành
nên BD//AC
Bài 2
Bài làm
a) Xét tam giác ABM và tam giác DCM có:
BM = MC ( Do M là trung điểm BC )
^AMB = ^DMC ( hai góc đối )
MD = MA ( gt )
=> Tam giác ABM = tam giác DCM ( c.g.c )
b) Xét tam giác BHA và tam giác BHE có:
HE = HA ( Do H là trung điểm AE )
^BHA = ^BHE ( = 90o )
BH chung
=> Tam giác BHA = tam giác BHE ( c.g.c )
=> AB = BE
Mà tam giác ABM = tam giác DCM ( cmt )
=> AB = CD
=> BE = CD ( đpcm )
Bài 3
Bài làm
a) Xét tam giác ABD và tam giác ACD có:
AB = AB ( gt )
BD = DC ( Do M là trung điểm BC )
AD chung
=> Tam giác ABD = tam giác ACD ( c.c.c )
b) Xét tam giác BEC và tam giác MEA có:
AE = EC ( Do E kà trung điểm AC )
^BEC = ^MEA ( hai góc đối )
BE = EM ( gt )
=> Tam giác BEC = tam giác MEA ( c.g.c )
=> BC = AM
Mà BD = 1/2 . BC ( Do D là trung điểm BC )
hay BD = 1/2 . AM
Hay AM = 2.BD ( đpcm )
c) Vì tam giác ABD = tam giác ACD ( cmt )
=> ^ADB = ^ADC ( hai góc tương ứng )
Mà ^ADB + ^ADC = 180o ( hai góc kề bù )
=> ^ADB = ^ADC = 180o/2 = 90o
=> AD vuông góc với BC (1)
Vì tam giác BEC = tam giác MEA ( cmt )
=> ^EBC = ^EMA ( hai góc tương ứng )
Mà hai góc này ở vị trí so le trong
=> AM // BC (2)
Từ (1) và (2) => AM vuông góc với AD
=> ^MAD = 90o
# Học tốt #
Bài 1( Hình mik đăng lên trước nha, mới lại phần bn nối điểm K với B, điểm F với D hộ mik nhé)
a) Xét tam giác EFA và tam giác CAB, có:
AE = AC ( giả thiết)
AF = AB (giả thiết)
Góc EAF = góc BAC (2 góc đối đỉnh)
=> ΔEAF = ΔCAB (c.g.c)
b) Vì ΔEFA = ΔCAB (Theo a)
=> Góc ABC = Góc EFA (cặp góc tương ứng)
=> EF = BC (cặp cạnh tương ứng) (1)
Mà EK = KF = 1/2 EF (2)
BD = DC = 1/2 BC (3)
Từ (1), (2) và (3)
=> KF = BD
Xét ΔKFB và ΔFBD, có
Cạnh BF chung
KF = BD (chứng minh trên)
Góc EFB = Góc ABC (chứng minh trên)
=> ΔKFB =ΔDBF (c.g.c)
=> KB = FD (cặp cạnh tương ứng)
VẼ HÌNH BẠN TỰ VE NHA
a) xét tam giác ABM và tam giác DCM có:
BM=CM( M LÀ TRUNG ĐIỂM CỦA BC)
GÓC BMA = GÓC CMD( 2 GÓC ĐỐI ĐỈNH)
AM=DM(GT)
=> TAM GIÁC ABM = TAM GIÁC DCM( C-G-C)
=>AB=CD( 2 CẠNH TƯƠNG ỨNG)
MA AB<AC(GT)
=> CD<AC
K CHO MÌNH NHA
NĂN NỈ