Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(c^2=\left(a^x.b^y\right)^2=a^{2x}.b^{2y};\)có 21 ước \(\Rightarrow\left(2x+1\right)\left(2y+1\right)=21=3.7=1.21\Rightarrow\orbr{\begin{cases}x=\left\{1,3\right\}\\y=\left\{3,1\right\}\end{cases}}\)
\(c^3=a^{3x}.b^{3y}\Rightarrow\left(3x+1\right)\left(3y+1\right)=4.10=40\)
ta có:aaaa=1111.a=11.101.a là tích 2 số nguyên tố
<=>a=1
vậy số phải tìm là 1111
Làm được rồi nè:
Dạng phân tích ra thừa số nguyên tố của n là n = ax.by ( x, y \(\ne\) 0).
Ta có n2 = a2x.b2y có (2x + 1).(2y + 1) ước số nên (2x + 1).(2y + 1) = 21.
Giả sử x \(\le\) y, ta được x = 1 và y = 3
n3 = a3x.b3y có (3x + 1).(3y + 1) ước số, tức là có 4.10 = 40 (ước)
Vậy n3 có 40 ước số.
\(a=p_1^m.p_2^n\Rightarrow a^3=p_1^{3m}.p_2^{3m}.\) Số ước của \(a^3\)là ( 3m + 1 ) ( 3n + 1 ) = 40 , suy ra m = 1 , n = 3 ( hoặc m = 3 , n = 1 )
Số \(a^2=p_1^{2m}.p_2^{2n}\) có số ước là ( 2m + 1 ) ( 2n + 1 ) = 3 . 7 = 21 ( ước )
ủng hộ mk nhé k nhiều vô .
dạng phân tích của n= a^x.b^y(x,y khác 0)
n^2=a^2x.b^2y
có:(2x+1).(2y+1)=21
giả sử x<y =>x=1,y=3
n^3=a^3x.b^3y =>(3x+1).(3y+1)=(3.1+1).(3.3+1)=40
vậy n^3 có 40 ước
a3 có tất cả 40 ước
Theo đề bài ta có:
a = p1m . p2n \(⇒\) a2 = p12m . p22n.
Số ước của a2 là (2m + 1).(2n + 1) = 21 (ước)
\(⇒\) m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a3 = p13m . p23n có số ước là [(3m + 1) . (3n + 1)] (ước)
-Với m = 1 ; n = 3 thì a3 có (3.1 + 1) . (3.3 + 1) = 4 . 10 = 40 (ước)
-Với m = 3 ; n = 1 thì a3 có (3.3 + 1) . (3.1 + 1) = 10 . 4 = 40 (ước)