Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phương trình có hai nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}\Delta\ge0\\a\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(3m-1\right)^2-4.\left(m+1\right)\left(2m-2\right)\ge0\\\Delta\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m^2-6m+9\ge0\\m\ne-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-3\right)^2\ge0\\m\ne1\end{matrix}\right.\)\(\Leftrightarrow m\ne1\).
Áp dụng định ly Viet:
\(x_1+x_2=-\dfrac{3m-1}{m+1}=3\)\(\Leftrightarrow3m-1=-3m-3\)\(\Leftrightarrow6m=-2\)\(\Leftrightarrow m=-\dfrac{1}{3}\).
Vậy \(m=-\dfrac{1}{3}\) là giá trị cần tìm.
Để pt có 2 nghiệm trái dấu \(\Leftrightarrow3m-2< 0\Leftrightarrow m< \dfrac{2}{3}\)
Nếu \(x_1< 0\) thì \(\dfrac{1}{x_1}-3< 0\) trong khi \(\left|\dfrac{1}{x_2}\right|>0\Rightarrow\) không thỏa mãn
Vậy \(x_1>0;x_2< 0\)
Do đó:
\(\dfrac{1}{x_1}-3=\left|\dfrac{1}{x_2}\right|=-\dfrac{1}{x_2}\)
\(\Leftrightarrow\dfrac{1}{x_1}+\dfrac{1}{x_2}=3\Leftrightarrow x_1+x_2-3x_1x_2=0\)
\(\Leftrightarrow-2\left(m-1\right)-3\left(3m-2\right)=0\)
\(\Leftrightarrow m=...\)
1: \(\text{Δ}=\left(-m\right)^2-4\left(m-2\right)=m^2-4m+8=\left(m-2\right)^2+4>0\)
=>Phương trình luôn có hai nghiệm phân biệt
Theo đề, ta có: m-2<0
=>m<2
2: \(\Leftrightarrow\dfrac{x_1^2+1}{x_1}\cdot\dfrac{x_2^2+1}{x_2}=9\)
\(\Leftrightarrow\dfrac{\left(x_1\cdot x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2+1}{x_1x_2}=9\)
\(\Leftrightarrow\dfrac{\left(m-2\right)^2+\left(-m\right)^2-2\left(m-2\right)+1}{m-2}=9\)
\(\Leftrightarrow m^2-4m+4+m^2-2m+4+1=9m-18\)
\(\Leftrightarrow2m^2-6m+9-9m+18=0\)
=>2m^2-15m+27=0
hay \(m\in\varnothing\)
3: =>m=0
Bài 1:
Khai bút đầu năm lấy may :''>
Đặt $x^2+ax+1=t$ thì ta có hệ \(\left\{\begin{matrix} x^2+ax+(1-t)=0(1)\\ t^2+at+1=0(2)\end{matrix}\right.\)
Trước tiên, pt $(2)$ cần có nghiệm.
Điều này xảy ra khi $\Delta_{(2)}=a^2-4\geq 0\Leftrightarrow a\geq 2$ hoặc $a\leq -2$
Để PT ban đầu có nghiệm duy nhất thì PT $(1)$ phải có nghiệm duy nhất. Điều này xảy ra khi $\Delta_{(1)}=a^2-4(1-t)=0$
$\Leftrightarrow 4(1-t)=a^2$. Mà $a^2\geq 4$ nên $1-t\geq 1\Rightarrow t\leq 0$
------------------
Giờ ta xét:
Nếu $a\leq -2$. Kết hợp với $t\leq 0\Rightarrow at\geq -2t$
$\Rightarrow 0=t^2+at+2\geq t^2-2t+1\Leftrightarrow 0\geq (t-1)^2$.
$\Rightarrow t-1=0\Rightarrow t=1$ (vô lý vì $t\leq 0$)
Do đó $a\geq 2$
Tuy nhiên thay $a=2$ vào hệ ta thấy không thỏa mãn. Do đó $a>2$ (đpcm)
Bài 2:
Nếu $a=0\Rightarrow 2b+5c=0\Rightarow c=\frac{-2}{5}b$
PT trở thành: $bx+c=0$
$\Leftrightarrow bx-\frac{2}{5}b=0$ có nghiệm duy nhất $x=\frac{2}{5}$ nếu $b\neq 0$ hoặc vô số nghiệm nếu $b=0$
Tức là với $a=0$ pt luôn có nghiệm.
Nếu $a\neq 0$. PT đã cho là pt bậc hai ẩn $x$
Xét $\Delta=b^2-4ac=b^2-4(-2b-5c)c=b^2+8bc+20c^2=(b+4c)^2+4c^2\geq 0$ với mọi $b,c$ nên PT đã cho luôn có nghiệm.
Vậy........
Để phương trình có hai nghiệm phân biệt âm :
\(\left\{{}\begin{matrix}\Delta>0\\S< 0\\P>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)^2-9>0\left(1\right)\\\dfrac{-2\left(m^2-1\right)}{9.2}< 0\left(2\right)\\\dfrac{1}{9}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)^2>9\\m^2-1>0\end{matrix}\right.\)
Với \(m>2\) thì \(\left(m^2-1\right)^2-9>\left(2^2-1\right)^2-9=0\) nên (1) thỏa mãn.
Với \(m>2\) thì \(m^2-1>2^2-1=3>0\) nên (2) thỏa mãn.
Vậy \(m>2\) phương trình có hai nghiệm âm.
Để phương trình có hai nghiệm thì:
\(\left\{{}\begin{matrix}a\ne0\\\Delta\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)^2-9\ge0\\9\ne0\end{matrix}\right.\)
Áp dụng định lý Viet ta được:
\(x_1+x_2=\dfrac{-2\left(m^2-1\right)}{9}=4\) \(\Leftrightarrow m^2-1=-18\)
\(\Leftrightarrow m^2=-17\) (loại)
Vậy không có giá trị m thỏa mãn.
để pt có 2 nghiệm phân biệt thì: đenta > 0
mà ddeenta = m2 - 6m - 7 > 0
giải ra ta đc: m<-1 hay m>7 (1)
áp dụng hệ thức vi-et đc x1 + x2 = m-1 và x1.x2= m+2
kết 2 biểu thức trên dễ dàng làm đc x12 + x22 = m2-4m-3
bđt trên (=) (x12+x22)/x12.x22 - 1 > 0
thay vào đc (-16m -7)/(m2+4m+4) > 0 =) m khác -2 và m<-7/16
kết hợp vs (1) =) m<-1 và m khác -2
Để phương trình có hai nghiệm thì \(\Delta\ge0\)\(\Leftrightarrow m^2-4\ge0\) \(\Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\).
Theo định lý Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=1\end{matrix}\right.\).
Khi đó: \(A=\dfrac{\left(x_1-x_2\right)^2}{x_1+x_2-1}=\dfrac{\left(x_1+x_2\right)^2-4x_1x_2}{x_1+x_2-1}=\dfrac{\left(-m\right)^2-4.1}{-m-1}\)\(=-\dfrac{m^2-4}{m+1}\)\(=-\dfrac{m\left(m+1\right)-\left(m+1\right)-3}{m+1}\)\(=-m-1-\dfrac{3}{m+1}\).
Để A có giá trị nguyên thì \(m+1\inƯ\left(3\right)\) .
Suy ra \(m+1\in\left\{-1;1;-3;3\right\}\).
m + 1 = -1 thì m = - 2.
m + 1 = 1 thì m = 0. (loại).
m + 1 = -3 thì m = -4.
m + 1 = 3 thì m = 2.
Bài 2:
Theo đề, ta có hệ:
\(\left\{{}\begin{matrix}\dfrac{-b}{2a}=2\\-\dfrac{b^2-4ac}{4a}=1\\a+b+c=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\b^2-4ac=-4a\\a+b+c=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\\left(-2a\right)^2-4ac=-4a\\a+b+c=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\4a^2-4ac=-4a\\a+b+c=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\a-c=-1\\a+b+c=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\c=a+1\\a-2a+a+1=-1\end{matrix}\right.\)
=>1=-1(loại)