Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có: \(m^3+3m^2+2m+5=m.\left(m^2+3m+2\right)+5\)
\(=m.\left[m.\left(m+1\right)+2.\left(m+1\right)\right]+5\)
\(=m.\left(m+1\right).\left(m+2\right)+5\)
Giả sử \(d\) là ƯCLN của \(m.\left(m+1\right).\left(m+2\right)+5\) và \(m.\left(m+1\right).\left(m+2\right)+6\)
\( \implies\) \(m.\left(m+1\right).\left(m+2\right)+5\) chia hết cho d và \(m.\left(m+1\right).\left(m+2\right)+6\) chia hết cho \(d\)
\( \implies\) \(\left[m.\left(m+1\right).\left(m+2\right)+6\right]-\left[m.\left(m+1\right).\left(m+2\right)+5\right]\) chia hết cho \(d\)
\( \implies\) \(1\) chia hết cho \(d\)
\( \implies\) \(d=1\)
\( \implies\) \(m.\left(m+1\right).\left(m+2\right)+5\) và \(m.\left(m+1\right).\left(m+2\right)+6\) nguyên tố cùng nhau
Vậy \(A\) là phân số tối giản
b)Ta thấy : \(m;m+1;m+2\) là \(3\) số tự nhiên liên tiếp nên nếu \(m\) chia \(3\) dư \(1\) thì \(m+2\) chia hết cho \(3\) ; nếu \(m\) chia \(3\) dư \(2\) thì \(m+1\) chia hết cho \(3\)
Do đó : \(m.\left(m+1\right).\left(m+2\right)\) chia hết cho \(3\) . Mà \(6\) chia hết cho \(3\)
\( \implies\) \(m.\left(m+1\right).\left(m+2\right)+6\) có ước nguyên tố là \(3\)
Vậy \(A\) là số thập phân vô hạn tuần hoàn
A/ C là phân số tới giản
B C là số thập phân vô hạn tuần hoàn
a) \(C=\frac{m^3+3m^2+2m+5}{m\left(m+1\right)\left(m+2\right)+6}\)
\(C=\frac{m^3+2m^2+m^2+2m+5}{m\left(m+1\right)\left(m+2\right)+6}\)
\(C=\frac{m^2.\left(m+2\right)+m.\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\)
\(C=\frac{\left(m+2\right).\left(m^2+m\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\)
\(C=\frac{\left(m+2\right).m.\left(m+1\right)+5}{m\left(m+1\right)\left(m+2\right)+6}=\frac{a}{a+1}\)
Gọi d = ƯCLN(a; a + 1) (d \(\in\) N*)
\(\Rightarrow\begin{cases}a⋮d\\a+1⋮d\end{cases}\) \(\Rightarrow\left(a+1\right)-a⋮d\)
\(\Rightarrow1⋮d\)
Mà d \(\in\) N* => d = 1
=> ƯCLN(a; a + 1) = 1
=> C là phân số tối giản (đpcm)
b) Ta thấy: m.(m + 1).(m + 2) là tích 3 số nguyên liên tiếp nên\(m\left(m+1\right)\left(m+2\right)⋮3\)
Mà \(5⋮̸3\); \(6⋮3\)
\(\Rightarrow\begin{cases}\left(m+2\right).m.\left(m+1\right)+5⋮̸3\\m\left(m+1\right)\left(m+2\right)+6⋮3\end{cases}\)
Như vậy, đến khi tối giản, phân số C vẫn có tử \(⋮3;\ne2;5\) nên phân số C viết được dưới dạng số thập phân vô hạn tuần hoàn.
a: \(C=\dfrac{m\left(m^2+3m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+5}=\dfrac{m\left(m+1\right)\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+5}=1\)
Do đó: C là phân số tối giản
b: Phân số C=1/1 được viết dưới dạng là số thập phân hữu hạn
Nếu bạn Lan được thêm 3 điểm 10 nữa thì số điểm được tăng thêm là :
3 x 10 = 30 ( điểm )
Để điểm trung bình tất cả các bài của bạn Lan là 8.0 thì cần phải bù thêm số điểm là :
30 - 3 x 8 = 6 ( điểm )
Nếu bạn Lan được thêm 2 điểm 9 nữa thì số điểm được tăng thêm là :
2 x 9 = 18 ( điểm )
Để điểm trung bình tất cả các bài của bạn Lan là 7,5 thì cần phải bù thêm số điểm là :
18 - 2 x 7,5 = 3 ( điểm )
Khi tăng điểm trung bình của tất cả các bài từ 7,5 lên 8,0 thì tổng số điểm của các bài sẽ tăng là :
6 - 3 = 3 ( điểm )
Hiệu của hai điểm trung bình là :
8 - 7,5 = 0,5 ( điểm )
Bạn Lan hiện tại đã được kiểm tra số bài là :
3 : 0,5 = 6 ( bài )
Vậy hiện tại bạn Lan đã được kiểm tra 6 bài.
CHÚC EM HỌC TỐT!!!
chứng tỏ rằng ƯCLN của tử và mẫu =1