K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2018

Tham khảo bài này nha!

Hình thang ABCD (AB//CD) có AC va BD cắt nhau tại O , AD và BC cắt nhau tại K . Chứng minh rằng OK đi qua trun?

 Tứ giác ABCD là hình thang nên:AB//CD. 
Gọi M, N lần lượt là giao điểm của KO với AB,CD. 
Áp dụng định lý talet ta có: 
AM/DN=MB/NC(=KM/KN) 
=(AM+MB)/(CN+ND) (t/c dãy tỉ số bằng nhau) =AB/DC. 
=AO/OC=AM/NC. 
Vậy AM/DN=AM/NC hay DN=NC. 
tương tự MB=MA. 
hay ta có OK đi qua trung điểm của AB và CD.

20 tháng 1 2018

:  Tứ giác ABCD là hình thang nên:AB//CD. 
Gọi M, N lần lượt là giao điểm của KO với AB,CD. 
Áp dụng định lý talet ta có: 
AM/DN=MB/NC(=KM/KN) 
=(AM+MB)/(CN+ND) (t/c dãy tỉ số bằng nhau) =AB/DC. 
=AO/OC=AM/NC. 
Vậy AM/DN=AM/NC hay DN=NC. 
tương tự MB=MA. 
 ta có OK đi qua trung điểm của AB và CD.

12 tháng 2 2016

ai giúp mình với

1: Xét ΔADC có OM//DC

nên \(\dfrac{OM}{DC}=\dfrac{AM}{AD}\left(1\right)\)

Xét ΔBDC có ON//DC

nên \(\dfrac{ON}{DC}=\dfrac{BN}{BC}\left(2\right)\)

Xét hình thang ABCD có MN//AB//CD

nên \(\dfrac{AM}{MD}=\dfrac{BN}{NC}\)

=>\(\dfrac{MD}{AM}=\dfrac{CN}{NB}\)

=>\(\dfrac{MD+AM}{AM}=\dfrac{CN+NB}{NB}\)

=>\(\dfrac{AD}{AM}=\dfrac{CB}{BN}\)

=>\(\dfrac{AM}{AD}=\dfrac{NB}{BC}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{OM}{DC}=\dfrac{ON}{DC}\)

=>OM=ON