Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AHE vuông tại H:
Ta có: AH2 = AE2 + EH2 (Định lý Pytago).
Thay số: AH2 = 162 + 122
<=> AH2 = 256 + 144 <=> AH2 = 400 <=> AH = 20 (cm)
Xét tam giác AHB vuông tại H, EH là đường cao:
Ta có: AE.EB = EH2 (Hệ thức lượng)
Thay số: 16.EB = 122
<=> 16.EB = 144
<=> EB = 9 (cm)
Xét tam giác AHE vuông tại E:
tan BAH = \(\dfrac{EH}{AE}\) (Tỉ số lượng giác)
Thay số: tan BAH = \(\dfrac{12}{16}=\dfrac{3}{4}\)
tan BAH = 36o 52'
Câu a bạn tự CM
b) \(\Delta ABH\) vuông tại H có đường cao HE
=> \(AH^2=AE.AB\left(1\right)\)
\(\Delta ACH\) vuông tại H có đường cao HF
=> \(AH^2=AF.AC\left(2\right)\)
Từ (1) và (2) =>\(AE.AB\) \(=AF.AC\)
c) Có : \(AE.AB\) \(=AF.AC\)
=> \(\frac{AE}{AC}=\frac{AF}{AB}\)
\(\Delta AEF\) và \(\Delta ACB\) có :
\(\frac{AE}{AC}=\frac{AF}{AB}\) và \(\widehat{BAC}:chung\)
=> \(\Delta AEF\) ~ \(\Delta ACB\)
Bạn tự vẽ hình nha =="
AC = AH + HC = 6 + 4 = 10 (cm)
mà AC = AB (tam giác ABC cân tại A)
=> AB = 10 (cm)
Tam giác HAB vuông tại H có:
AB2 = AH2 + BH2 (định lý Pytago)
102 = 62 + BH2
BH2 = 102 - 62
BH2 = 100 - 36
BH2 = 64
BH = 8 (cm)
Tam giác HBC vuông tại H có:
BC2 = BH2 + CH2
BC2 = 82 + 42
BC2 = 64 + 16
BC2 = 80
BC = √80(cm)80(cm)
Chúc bạn học tốt ^^
Bạn tự vẽ hình nha. Cũng đơn giản lắm....
Xét hai tam giác vuông AHB và BHC có :
AH = HC (= 6cm)
HB là cạnh chung
Do đó : ΔAHB=ΔCHBΔAHB=ΔCHB(cạnh - góc - cạnh)
=> BC = AB ( hai cạnh tương ứng)
Mà AB = AC ( định nghĩa tam giác cân)
=> BC = AB = AH+CH= 12cm
Cô hướng dẫn nhé.
a. Kẻ \(DK\perp BC.\)
Khi đó ta thấy \(IA=IK;DA=DK.\)Lại có \(\Delta HIK\sim\Delta KDC\left(g-g\right)\Rightarrow\frac{IH}{KD}=\frac{IK}{DC}\Rightarrow\frac{IH}{IK}=\frac{KD}{DC}\Rightarrow\frac{IH}{IA}=\frac{DA}{DC}\)
b. Ta có \(BE.AB=BH^2;CF.AC=HC^2\Rightarrow BE.AB.CF.AC=HB^2.HC^2=AH^4\)
\(\Rightarrow BE.CF\left(AB.AC\right)=AH^4\Rightarrow BE.CF.AH.BC=AH^4\Rightarrow BE.CF.BC=AH^3\)
c. Tính \(BE\Rightarrow AE;CF\Rightarrow AC\Rightarrow S_{EHF}\)
b: Xét ΔHBA vuông tại H có HE là đường cao ứng với cạnh huyền AB
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
a) Áp dụng định lí Pytago vào ΔAEH vuông tại E, ta được:
\(AH^2=AE^2+EH^2\)
\(\Leftrightarrow AH^2=16^2+12^2=400\)
hay AH=20(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(HE^2=EA\cdot EB\)
\(\Leftrightarrow EB=\dfrac{HE^2}{EA}=\dfrac{12^2}{16}=\dfrac{144}{16}=9\left(cm\right)\)
Xét ΔEAH vuông tại H có
\(\tan\widehat{EAH}=\dfrac{EH}{EA}\)
\(\Leftrightarrow\tan\widehat{BAH}=\dfrac{12}{16}=\dfrac{3}{4}\)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(AE\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:
\(AF\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
c) Ta có: \(AE\cdot AB=AF\cdot AC\)(cmt)
nên \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAEF và ΔACB có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)
\(\widehat{BAC}\) chung
Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)