K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2020

\(S=\frac{2n+1}{n-3}+\frac{3n+1}{n-3}-\frac{4n-5}{n-3}\\ =\frac{2n+1+3n+1-4n+5}{n-3}\\ =\frac{\left(2n+3n-4n\right)+\left(1+1+5\right)}{n-3}\\ =\frac{n+7}{n-3}\)

a) Để S nguyên \(\Rightarrow\left(n+7\right)⋮\left(n-3\right)\)

Ta đặt \(\left(n-3\right)⋮\left(n-3\right)\)

\(\Rightarrow\left(n+7\right)-\left(n-3\right)⋮\left(n-3\right)\\ \Leftrightarrow\left(n+7-n+3\right)⋮\left(n-3\right)\Leftrightarrow\left(7+3\right)⋮\left(n-3\right)\\ \Leftrightarrow10⋮\left(n-3\right)\)

\(\Rightarrow n=5\) hoặc \(n=8\)

Nếu \(n=5\)

\(\Rightarrow S=\frac{n+7}{n-3}=\frac{5+7}{5-3}=\frac{12}{2}=6\)

Nếu \(n=8\)

\(\Rightarrow S=\frac{n+7}{n-3}=\frac{8+7}{8-3}=\frac{15}{5}=5\)

b) Để S tối giản \(ƯCLN\left(n+7;n-3\right)=1\)

Vì 7 và 3 là số lẻ nên \(n⋮̸2\)

nếu n có hàng đơn vị là 2 thì S sẽ chia hết cho 5

nên \(\Leftrightarrow n=\left\{n\in Z|n⋮2;n\ne10k+2\right\}\)

5 tháng 5 2021

khó quá

1 tháng 5 2017

A = \(\frac{2n+3}{n-3}+\frac{3n-5}{n-3}+\frac{4n-5}{n-3}=\frac{2n+3+3n-5+4n-5}{n-3}=\frac{9n-7}{n-3}=\frac{9n-27+20}{n-3}=\frac{9\left(n-3\right)+20}{n-3}=9+\frac{20}{n-3}\)

a, Để A nguyên <=> n - 3 thuộc Ư(20) = {1;-1;2;-2;4;-4;5;-5;10;-10;20;-20}

n-31-12-24-45-510-1020-20
n42517-18-213-723-17

Vậy...

b, Để A tối giản <=> UCLN(20,n-3) = 1

=> n-3 không chia hết cho 20

=> n-3 khác 20k (k thuộc Z)

=> n khác 20k + 3

Vậy.....

1 tháng 5 2017

a) Ta có : 

\(A=\frac{2n+3}{n-3}+\frac{3n-5}{n-3}+\frac{4n-5}{n-3}=\frac{\left(2n+3\right)+\left(3n-5\right)+\left(4n-5\right)}{n-3}=\frac{7n-7}{n-3}=\frac{7n-21+14}{n-3}=\frac{7\left(n-3\right)+14}{n-3}=7+\frac{14}{n-3}\)để A là số nguyên thì \(\frac{14}{n-3}\)là số nguyên

\(\Rightarrow14\)\(⋮\)\(n-3\)

\(\Rightarrow\)n - 3 \(\in\)Ư ( 14 ) = { 1 ; -1 ; 2 ; -2 ; 7 ; -7 ; 14 ; -14 }

lập bảng ta có :

n - 3 1-12-27-714-14
n425110-417-11

b) Để A là phân số tối giản \(\Leftrightarrow\)ƯCLN ( 7n - 7 ; n - 3 ) = 1 \(\Leftrightarrow\)ƯCLN ( 14 ; n - 3 ) = 1

\(\Leftrightarrow\)n - 3 không chia hết cho 14

\(\Rightarrow\)n - 3 \(\ne\)14k

\(\Rightarrow\)\(\ne\)14k + 3

6 tháng 4 2016

$s=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}$

7 tháng 8 2017

a) \(A=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}\)

b) \(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)

Để A đạt giá trị nguyên thì \(\frac{4}{n-3}\)đạt giá trị nguyên <=> \(n-3\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)

Tới đây lập bảng tìm n.

5 tháng 4 2021

đễ quá