Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: IK⊥AC
AB⊥AC
Do đó: IK//AB
b: Xét ΔAKI có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔAKI cân tại A
c: \(\widehat{BAK}+\widehat{HAK}=90^0\)
\(\widehat{AIK}+\widehat{IAH}=90^0\)
mà \(\widehat{KAH}=\widehat{HAI}\)
nên \(\widehat{BAK}=\widehat{AIK}\)
A B C K H I
a/ Ta có
\(AB\perp AC\left(gt\right)\)
\(HK\perp AC\left(gt\right)\)
=> AB//HK (cùng vuông góc với AC)
b/ Xét tg AKI có
\(AH\perp HI\) => AH là đường cao của tg AKI
HK=HI (gt) => AH là trung tuyến của tg AKI
=> tg AKI cân tại A (Tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
c/ Ta có
tg AKI cân tại A \(\Rightarrow\widehat{AIK}=\widehat{AKI}\) (góc ở đáy tg cân)
AB//HK (cmt) \(\Rightarrow\widehat{BAK}=\widehat{AKI}\) (góc so le trong)
\(\Rightarrow\widehat{BAK}=\widehat{AIK}\) (cùng bằng góc \(\widehat{AKI}\) )
d/ Xét tg CKI có
\(CH\perp KI\) => CH là đường cao của tg CKI
HK=HI => CH là trung tuyến của tg CKI
=> tg CKI cân tại C (Tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
Xét tg AIC và tg AKC có
tg AKI cân tại A (cmt) => AI=AK
tg CKI cân tại C (cmt) => CI=CK
AC chung
=> tg AIC = tg AKC (c.c.c)
a) sử dụng tc: Từ vuông góc đến //
b)tam giác KHA= tam giác IHA(c.g.c)
=> AK=AI
=> góc AKI=góc AIK
vì AK=AI=> tam giác AKI cân
c) vì AB//HK=> góc BAK=góc AKI(so le trong)
góc BAK=góc AKI
mà góc AKI=góc AIK(cmt)
d) vì HC vuông góc với KI, KH=HI( GT) =>HC là trung trực=> KC=CI
tam giác AKC = tam giác AIC
có hình ko
A B C K H I
a) sử dụng tc: Từ vuông góc đến //
b)tam giác KHA= tam giác IHA(c.g.c)
=> AK=AI
=> góc AKI=góc AIK
vì AK=AI=> tam giác AKI cân
c) vì AB//HK=> góc BAK=góc AKI(so le trong)
}=> góc BAK=góc AIK
mà góc AKI=góc AIK(cmt)
d) vì HC vuông góc với KI, KH=HI( GT) =>HC là trung trực=> KC=CI( t/c đường trung trực
tam giác AKC = tam giác AIC(c.c.c)
Hết
đúng nha
a) Ta có : AB vuông góc với AC
HK vuông góc với AC
AB // HK
b) ΔHAK=ΔHAI(c.g.c)(HA chung; HK = HI; AHKˆ=AHIˆ=900)
AK = AI Tam giác AKI cân tại A
c) Theo b : AIKˆ=AKIˆ
Mà BAKˆ=AKIˆ (cặp góc so le trong, AB // HK)
Từ 2 điều trên suy ra : BAKˆ=AIKˆ(=AKIˆ)
d) Tam giác IAK cân tại A có AH là đường cao ứng với đáy KI nên AH là đường phân giác xuất phát từ đỉnh A của tam giác AKI.
KACˆ=IACˆ
ΔAIC=ΔAKC(c.g.c) (AC chung; AK = AI (theo b); KACˆ=IACˆ(cmt))
1 đúng nhé
a) ta có :AB vuông góc AC
HK vuông góc AC
b) Xét tam giác AKH và tam giác AHI
AH là cạnh chung
H1 = H2
IH=HK (gt)
suy ra 2 tam giác trên bằng nhau
suy ra KA=AI
K^=I^
Vì KA=AI mà K = I nên tam giác KAI LÀ tam giác cân . Cân tại A
a: Ta có: AB\(\perp\)AC
IK\(\perp\)AC
Do đó: IK//AB
b: Xét ΔAKH vuông tại H và ΔAIH vuông tại H có
AH chung
HK=HI
Do đó: ΔAKH=ΔAIH
Suy ra: AK=AI
Xét ΔAKI có AK=AI
nên ΔAKI cân tại A
c: Ta có: \(\widehat{BAK}+\widehat{HAK}=90^0\)
\(\widehat{AIK}+\widehat{HAI}=90^0\)
mà \(\widehat{HAK}=\widehat{HAI}\)
nên \(\widehat{BAK}=\widehat{AIK}\)
a: AB\(\perp\)AC
IK\(\perp\)AC
Do đó:AB//IK
b: Xét ΔAKI có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔAKI cân tại A
c: Ta có: ΔAKI cân tại A
mà AH là đường trung tuyến
nên AH là tia phân giác của góc IAK
Ta có: \(\widehat{BAK}+\widehat{HAK}=90^0\)
\(\widehat{AIK}+\widehat{HAI}=90^0\)
mà \(\widehat{HAK}=\widehat{HAI}\)
nên \(\widehat{BAK}=\widehat{AIK}\)
d: Xét ΔCIK có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCIK cân tại C
Xét ΔAIC và ΔAKC có
AI=AK
IC=KC
AC chung
Do đó: ΔAIC=ΔAKC
Cảm ơn bạn 🤩