K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

các bạn giải giúp mình mấy câu bất đẳng thức này với 1) tìm GTLN a) y=(6x+3)(5-2x) \(\dfrac{-1}{2}\le x\le\dfrac{5}{2}\) b)y=\(\dfrac{x}{x^2+2}\) x>0 2)cho 3 số thực a,b,c thỏa mãn \(a\ge9,b\ge4,c\ge1\). CM :\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\le\dfrac{11abc}{12}\) 3)cho x,y>0 thỏa mãn x+y=2 . CM a)xy(x2+y2)\(\le2\) b)x3y3(x3+y3)\(\le2\) 4) x,y là các số thực thỏa mãn \(0\le x\le3,0\le y\le4\) tìm GTLN A= (3-x)(4-y)(2x+3y) 5)...
Đọc tiếp

các bạn giải giúp mình mấy câu bất đẳng thức này với

1) tìm GTLN

a) y=(6x+3)(5-2x) \(\dfrac{-1}{2}\le x\le\dfrac{5}{2}\)

b)y=\(\dfrac{x}{x^2+2}\) x>0

2)cho 3 số thực a,b,c thỏa mãn \(a\ge9,b\ge4,c\ge1\). CM :\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\le\dfrac{11abc}{12}\)

3)cho x,y>0 thỏa mãn x+y=2 . CM

a)xy(x2+y2)\(\le2\)

b)x3y3(x3+y3)\(\le2\)

4) x,y là các số thực thỏa mãn \(0\le x\le3,0\le y\le4\)

tìm GTLN A= (3-x)(4-y)(2x+3y)

5) biết x,y,z,u\(\ge0\)và 2x+xy+z+yzu=1

tìm GTLN của P=x2y2z2u

6)cho a,b,c>0 và a+b+c=3 .CMR:\(a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\le5\)

7) cho 3 số dương x,y,z có tổng bằng 1 .CMR : \(\sqrt{\dfrac{xy}{xy+z}}+\sqrt{\dfrac{yz}{yz+x}}+\sqrt{\dfrac{xz}{xz+y}}\le\dfrac{3}{2}\)

8)cho 3 số dương a,b,c có tổng bằng 3 .

tìm GTLN của S=\(\dfrac{bc}{\sqrt{3a+bc}}+\dfrac{ca}{\sqrt{3b+ca}}+\dfrac{ab}{\sqrt{3c+ab}}\)

ko cần làm chi tiết lắm chỉ cần hướng dẫn là đc zùi

3
17 tháng 2 2019

\(8,\dfrac{bc}{\sqrt{3a+bc}}=\dfrac{bc}{\sqrt{\left(a+b+c\right)a+bc}}=\dfrac{bc}{\sqrt{a^2+ab+ac+bc}}\)

\(=\dfrac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{b}{a+b}+\dfrac{c}{a+c}}{2}\)

Tương tự cho các số còn lại rồi cộng vào sẽ được

\(S\le\dfrac{3}{2}\)

Dấu "=" khi a=b=c=1

Vậy

17 tháng 2 2019

\(7,\sqrt{\dfrac{xy}{xy+z}}=\sqrt{\dfrac{xy}{xy+z\left(x+y+z\right)}}=\sqrt{\dfrac{xy}{xy+xz+yz+z^2}}\)

\(=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{\dfrac{x}{x+z}+\dfrac{y}{y+z}}{2}\)

Cmtt rồi cộng vào ta đc đpcm

Dấu "=" khi x = y = z = 1/3

AH
Akai Haruma
Giáo viên
23 tháng 3 2017

Lời giải:

Vì mặt cầu tiếp xúc với đường thẳng nên độ dài bán kính chính bằng khoảng cách từ tâm đến đường thẳng đó

Ta thấy đường thẳng $(d)$ đi qua \(M(-1,2,-3)\) và có vector chỉ phương là \(\overrightarrow{u}=(2,1,-1)\)

\(\Rightarrow d(A,d)=\frac{|[\overrightarrow{u},\overrightarrow{MA}]|}{|\overrightarrow{u}|}=\frac{10\sqrt{3}}{\sqrt{6}}=5\sqrt{2}=R\rightarrow R^2=50\)

Do đó PTMC là: \((x-1)^2+(y+2)^2+(z-3)^2=50\)

Đáp án C

23 tháng 3 2017

cảm ơn bạn nhiều!!!

30 tháng 4 2018

\(\dfrac{\left|z-i\right|}{\left|z+i\right|}\Leftrightarrow\left|z-i\right|=\left|z+i\right|\Leftrightarrow\left|x+yi-i\right|=\left|x+yi+i\right|\)\(\Leftrightarrow\left(\left|x^2+\left(y+1\right)^2\right|\right)^2=\left(\left|x^2+\left(y-1\right)^2\right|\right)^2\)

\(\Leftrightarrow x^2+y^2-2y+1=x^2+y^2+2y+1\)

\(\Rightarrow y=0\)

Vậy là trục 0x

Đ/án : D

vuihihi

NV
30 tháng 5 2020

3.

\(x.f'\left(x\right)+\left(x+1\right)f\left(x\right)=3x^2.e^{-x}\)

\(\Leftrightarrow x.e^x.f'\left(x\right)+\left(x+1\right).e^x.f\left(x\right)=3x^2\)

\(\Leftrightarrow\left[x.e^x.f\left(x\right)\right]'=3x^2\)

Lấy nguyên hàm 2 vế:

\(\Rightarrow x.e^x.f\left(x\right)=\int3x^2dx=x^3+C\)

\(f\left(1\right)=\frac{1}{e}\Rightarrow1.e.\frac{1}{e}=1^3+C\Rightarrow C=0\)

\(\Rightarrow x.e^x.f\left(x\right)=x^3\Rightarrow f\left(x\right)=\frac{x^2}{e^x}\)

\(\Rightarrow f\left(2\right)=\frac{4}{e^2}\)

4.

Gọi (Q) là mặt phẳng chứa d và vuông góc (P)

(Q) nhận \(\overrightarrow{n_{\left(Q\right)}}=\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{u_d}\right]=\left(-3;2;1\right)\) là 1 vtpt

Phương trình (Q):

\(-3x+2\left(y+1\right)+1\left(z-2\right)=0\Leftrightarrow-3x+2y+z=0\)

d' là hình chiếu của d lên (P) nên là giao tuyến của (P) và (Q) có pt thỏa mãn:

\(\left\{{}\begin{matrix}x+y+z+3=0\\-3x+2y+z=0\end{matrix}\right.\)

\(\Rightarrow d'\) đi qua \(A\left(0;3;-6\right)\) và nhận \(\overrightarrow{u_{d'}}=\left[\overrightarrow{n_{\left(Q\right)}};\overrightarrow{n_{\left(P\right)}}\right]=\left(1;4;-5\right)\) là 1 vtcp

Phương trình chính tắc d': \(\frac{x}{1}=\frac{y-3}{4}=\frac{z+6}{-5}\)

NV
30 tháng 5 2020

1/

Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=\left(2x+1\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{dx}{x}\\v=x^2+x\end{matrix}\right.\)

\(\Rightarrow I=\left(x^2+x\right)lnx|^3_e-\int\limits^3_e\left(x+1\right)dx=\left(x^2+x\right)lnx|^3_e-\left(\frac{1}{2}x^2+x\right)|^3_e\)

\(=12ln3-\frac{e^2}{2}-\frac{15}{2}\)

2/

Đặt \(z=x+yi\)

\(\left|x+1+\left(y-1\right)i\right|=\left|x+\left(y-3\right)i\right|\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2=x^2+\left(y-3\right)^2\)

\(\Leftrightarrow2x+4y-7=0\Rightarrow x=\frac{7}{2}-2y\)

Ta có: \(A=\left|z-i\right|=\left|x+\left(y-1\right)i\right|=\sqrt{x^2+\left(y-1\right)^2}\)

\(=\sqrt{\left(\frac{7}{2}-2y\right)^2+\left(y-1\right)^2}=\sqrt{5y^2-16y+\frac{53}{4}}=\sqrt{5\left(y-\frac{8}{5}\right)^2+\frac{9}{20}}\ge\sqrt{\frac{9}{20}}\)

\(\Rightarrow\left|z-i\right|_{min}=\sqrt{\frac{9}{20}}\)

29 tháng 7 2019

Có: \(z^2\ge2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)\(\Leftrightarrow\)\(-z\le x+y\le z\)

And: \(\frac{z^2}{4}\ge\frac{x^2+y^2}{2}\ge\frac{2xy}{2}=xy\)

=> \(\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\ge2\sqrt{\frac{1}{\left(xy\right)^4}}+\frac{1}{z^4}=\frac{2}{\left(xy\right)^2}+\frac{1}{z^4}\ge\frac{2}{\left(\frac{z^2}{4}\right)^2}+\frac{1}{z^4}=\frac{33}{z^4}\)

And: \(x^4+y^4+z^4\ge\frac{\left(x^2+y^2\right)^2}{2}+\frac{z^4}{4}+\frac{3z^4}{4}\ge\frac{\left(x^2+y^2+z^2\right)^2}{6}+\frac{3z^4}{4}\)

\(\ge\frac{\left(\frac{\left(x+y\right)^2}{2}+z^2\right)^2}{6}+\frac{3z^4}{4}\ge\frac{\left(\frac{\left(-z\right)^2}{2}+z^2\right)^2}{6}+\frac{3z^4}{4}=\frac{\frac{9z^4}{4}}{6}+\frac{3z^4}{4}=\frac{9z^4}{8}\)

=> \(M=\left(x^4+y^4+z^4\right)\left(\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\right)\ge\frac{33}{z^4}.\frac{9z^4}{8}=\frac{297}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x=y\\x+y=-z\\x^2+y^2=\frac{z^2}{2}\end{cases}}\Leftrightarrow x=y=\frac{-z}{2}\)

... 

29 tháng 7 2019

à còn điều kiện \(x,y,z\ne0\) nữa nhé *3* 

NV
8 tháng 3 2022

Không mất tính tổng quát, giả sử \(x\ge y\ge z\)

\(y^2-yz+z^2=y^2+\left(z-y\right)y\le y^2\Rightarrow\dfrac{1}{y^2-yz+z^2}\ge\dfrac{1}{y^2}\)

Tương tự: \(\dfrac{1}{z^2-xz+x^2}\ge\dfrac{1}{x^2}\)

\(\Rightarrow P\ge\dfrac{1}{x^2-xy+y^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{x^2-xy+y^2}+\dfrac{x^2-xy+y^2}{x^2y^2}+\dfrac{1}{xy}\)

\(P\ge2\sqrt{\dfrac{x^2-xy+y^2}{x^2y^2\left(x^2-xy+y^2\right)}}+\dfrac{1}{xy}=\dfrac{3}{xy}\ge\dfrac{12}{\left(x+y\right)^2}\ge\dfrac{12}{\left(x+y+z\right)^2}=3\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;1;0\right)\) và hoán vị