K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2015

a,Với p bằng 3 ;p-1 =23(thoả mãn)

8p+1=25(loại)

Với p khác 3 suy ra p không chia hết cho 3; 8p không chia hết cho 3

mà( 8p-1) p (8p+1) là tích của 3 số tự nhiên liên tiếp

8p-1 >3 (p thuộc N) suy ra 8p-1 không chia hết cho 3

8p+1 chia hết cho  3

mà 8p+1>3

8p+1 là hợp số (đpcm)

**** mk nha

6 tháng 12 2015

2, 42=3.2.7

P=42k+7

Ta có:

Nếu p=2 ;r=40(t/m)

Nếu p=3 ;r=39(loại)

Nếu p>3,do p là nguyên tố nên ko thể là các ước nguyên dương của 42;r hợp số mà nên r=25

mk làm tiếp nha

 

 

2 tháng 11 2016

 Đặt A = 3^p -2^p -1 
Vì 42p=2.3.7.p mà p là SNT > 7 nên ta cần CM A chia hết cho 2,3,7,p 

Dễ thấy A chia hết cho 2 vì 3^p lẻ còn 2^p chẵn 

p lẻ nên 2^p=2^(2k+1)=(2^2)^k.2 ≡ 2 (mod 3) ⇒ A ≡ 0-2-1 ≡ 0 (mod 3) 

p không chia hết cho 3 nên p=3k+1 hoặc p=3k+2 
    Nếu p=3k+1: Vì p lẻ nên k chẵn ⇒ p=6m+1 ⇒ 3^p=3^(6m+1)=(3^6)^m.3 ≡ 3 (mod 7) còn 2^p=2^(3k+1) ≡ 2 (mod 7) ⇒ A ≡ 3-2-1 ≡ 0 (mod 7) 
    Nếu p=3k+2: Vì p lẻ nên k lẻ ⇒ p=6m+5 ⇒ 3^p=3^(6m+5) ≡ 3^5 ≡ 5 (mod 7) còn 2^p=2^(3k+2) ≡ 4 (mod 7) ⇒ A ≡ 5-4-1 ≡ 0 (mod 7) 
Tóm lại A chia hết cho 7 

Áp dụng định lý Fermat nhỏ ta có: 
3^p ≡ 3 (mod p) 
2^p ≡ 2 (mod p) 
⇒ A ≡ 3-2-1 ≡ 0 (mod p) 

=> đpcm

2 tháng 11 2016

CMR là chứng minh rồi . Mà chứng minh rồi thì làm chi nữa cho nó mệt.

2 tháng 5 2016

1) Ta có  : n+5 chia hết n-2

 =>          n-2+7 chia hết n-2

 =>           7 chia hết n-2

=> n-2\(\in\)Ư(7)=1;7;-1;-7

=>n=3;9;1;-5

20 tháng 2 2016

2 ) Ta có :

8p ; 8p + 1 ; 8p + 2 là 3 số tự nhiên liên tiếp => Tích của chúng chia hết cho 3

 mà p là số nguyên tố , 8  không chia hết cho 3 => 8p không chia hết cho 3 '

8p + 1 là số nguyên tố => không chia hết cho 3

=> 8p + 2 chia hết cho 3 ; 8p + 2 = 2 . ( 4p + 1 ) => 4p + 1 chia hết cho 3 hay 4p + 1 là hợp số

20 tháng 2 2016

quên mất nhớ có lời giải nữa nhé!

15 tháng 2 2016

gọi (30n + 17, 12n + 7) = d

=> 30n + 17 chia hết cho d và 12n + 7 chia hết cho d

=> (30n + 17) - (12n + 7) chia hết cho d

=> 30 - 12 chia hết cho d

=> mà d lẻ và < 1

=> d = 1

vậy 30n + 17 và 12n + 7 là hai số nguyên tố cùng nhau

15 tháng 2 2016

làm được bao nhiêu thì làm 

ai làm được nhiêu nhất sẽ dduocj

Bài 1: 

a: \(C=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)

\(=13\left(1+3^3+...+3^9\right)⋮13\)

b: \(C=\left(1+3^1+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+3^8\left(1+3+3^2+3^3\right)\)

\(=40\cdot\left(1+3^4+3^8\right)⋮40\)