Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Với p bằng 3 ;p-1 =23(thoả mãn)
8p+1=25(loại)
Với p khác 3 suy ra p không chia hết cho 3; 8p không chia hết cho 3
mà( 8p-1) p (8p+1) là tích của 3 số tự nhiên liên tiếp
8p-1 >3 (p thuộc N) suy ra 8p-1 không chia hết cho 3
8p+1 chia hết cho 3
mà 8p+1>3
8p+1 là hợp số (đpcm)
**** mk nha
2, 42=3.2.7
P=42k+7
Ta có:
Nếu p=2 ;r=40(t/m)
Nếu p=3 ;r=39(loại)
Nếu p>3,do p là nguyên tố nên ko thể là các ước nguyên dương của 42;r hợp số mà nên r=25
mk làm tiếp nha
Đặt A = 3^p -2^p -1
Vì 42p=2.3.7.p mà p là SNT > 7 nên ta cần CM A chia hết cho 2,3,7,p
Dễ thấy A chia hết cho 2 vì 3^p lẻ còn 2^p chẵn
p lẻ nên 2^p=2^(2k+1)=(2^2)^k.2 ≡ 2 (mod 3) ⇒ A ≡ 0-2-1 ≡ 0 (mod 3)
p không chia hết cho 3 nên p=3k+1 hoặc p=3k+2
Nếu p=3k+1: Vì p lẻ nên k chẵn ⇒ p=6m+1 ⇒ 3^p=3^(6m+1)=(3^6)^m.3 ≡ 3 (mod 7) còn 2^p=2^(3k+1) ≡ 2 (mod 7) ⇒ A ≡ 3-2-1 ≡ 0 (mod 7)
Nếu p=3k+2: Vì p lẻ nên k lẻ ⇒ p=6m+5 ⇒ 3^p=3^(6m+5) ≡ 3^5 ≡ 5 (mod 7) còn 2^p=2^(3k+2) ≡ 4 (mod 7) ⇒ A ≡ 5-4-1 ≡ 0 (mod 7)
Tóm lại A chia hết cho 7
Áp dụng định lý Fermat nhỏ ta có:
3^p ≡ 3 (mod p)
2^p ≡ 2 (mod p)
⇒ A ≡ 3-2-1 ≡ 0 (mod p)
=> đpcm
CMR là chứng minh rồi . Mà chứng minh rồi thì làm chi nữa cho nó mệt.
1) Ta có : n+5 chia hết n-2
=> n-2+7 chia hết n-2
=> 7 chia hết n-2
=> n-2\(\in\)Ư(7)=1;7;-1;-7
=>n=3;9;1;-5
2 ) Ta có :
8p ; 8p + 1 ; 8p + 2 là 3 số tự nhiên liên tiếp => Tích của chúng chia hết cho 3
mà p là số nguyên tố , 8 không chia hết cho 3 => 8p không chia hết cho 3 '
8p + 1 là số nguyên tố => không chia hết cho 3
=> 8p + 2 chia hết cho 3 ; 8p + 2 = 2 . ( 4p + 1 ) => 4p + 1 chia hết cho 3 hay 4p + 1 là hợp số
gọi (30n + 17, 12n + 7) = d
=> 30n + 17 chia hết cho d và 12n + 7 chia hết cho d
=> (30n + 17) - (12n + 7) chia hết cho d
=> 30 - 12 chia hết cho d
=> mà d lẻ và < 1
=> d = 1
vậy 30n + 17 và 12n + 7 là hai số nguyên tố cùng nhau
làm được bao nhiêu thì làm
ai làm được nhiêu nhất sẽ dduocj
Bài 1:
a: \(C=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^9\right)⋮13\)
b: \(C=\left(1+3^1+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+3^8\left(1+3+3^2+3^3\right)\)
\(=40\cdot\left(1+3^4+3^8\right)⋮40\)