Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a)\dfrac{20^5.5^{10}}{100^5}=\dfrac{20^5.5^5.5^5}{100^5}=\dfrac{100^5.3125}{100^5}=3125\)
2.
a)A có 36 sô hạng , chia A thành 18 nhóm , mỗi nhóm có 2 số hạng .
Ta có : A = \(\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{35}+3^{36}\right)\)
\(A=3.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{35}.\left(1+3\right)\)
\(A=3.4+3^3.4+...+3^{35}.4\)
\(A=4.\left(3+3^3+...+3^{35}\right)\)
Vậy A chia hết cho 4 .
b)Chia A thành 13 nhóm mỗi nhóm có 3 số hạng
Ta có : \(A=\left(3+3^2+3^3\right)+...+\left(3^{34}+3^{35}+3^{36}\right)\)
\(A=3.\left(1+3+9\right)+...+3^{34}.\left(1+3+9\right)\)
A=\(3.13+...+3^{34}.13\)
A= \(13.\left(3+..+3^{34}\right)\)
Vậy A chia hết cho 13
c) Tương tự như câu a và câu b
Bài 1:
\(S=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{a+b}+1\right)-3\)
\(=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)
\(=2007.\dfrac{1}{90}-3\)
\(=19,3\)
Vậy S = 19,3
5b)\(S=1+3+3^2+...+3^{2013}\)
\(\Rightarrow3S=3+3^2+3^3+...+3^{2014}\)
\(\Rightarrow3S-S=3^{2014}-1\)
\(\Rightarrow S=\dfrac{3^{2014}-1}{2}\)
a, \(4^3.5^3=\left(4.5\right)^3=20^3=8000\)
b, \(6^3.5^3=\left(6.5\right)^3=30^3=27000\)
c, \(8^2.5^2=\left(8.5\right)^2=40^2=1600\)
d, \(125^3.8^3=\left(125.8\right)^3=1000^3\)
e, \(5^2.6^2.3^2=\left(5.6.3\right)^2=90^2\)
\(\left(\frac{1}{2}\right)^5\times x=\left(\frac{1}{2}\right)^7\)
\(x=\left(\frac{1}{2}\right)^7\div\left(\frac{1}{2}\right)^5\)
\(x=\left(\frac{1}{2}\right)^{7-5}=\left(\frac{1}{2}\right)^2=\frac{1}{4}\) .
\(\left(\frac{3}{7}\right)^2\times x=\left(\frac{9}{21}\right)^2\)
\(\left(\frac{3}{7}\right)^2\times x=\left(\frac{3}{7}\right)^4\)
\(x=\left(\frac{3}{7}\right)^4\div\left(\frac{3}{7}\right)^2\)
\(x=\left(\frac{3}{7}\right)^{4-2}=\left(\frac{3}{7}\right)^2=\frac{9}{49}\)
\(2^x=2\Rightarrow x=1\)
\(3^x=3^4\Rightarrow x=4\)
\(7^x=7^7\Rightarrow x=7\)
\(\left(-3\right)^x=\left(-3\right)^5\Rightarrow x=5\)
\(\left(-5\right)^x=\left(-5\right)^4\Rightarrow x=4\)
\(2^x=4\Leftrightarrow2^x=2^2\Rightarrow x=2\)
\(2^x=8\Leftrightarrow2^x=2^3\Rightarrow x=3\)
\(2^x=16\Leftrightarrow2^x=2^4\Rightarrow x=4\)
\(3^{x+1}=3^2\Leftrightarrow x+1=2\Leftrightarrow x=2-1\Rightarrow x=1\)
\(5^{x-1}=5\Leftrightarrow x-1=1\Leftrightarrow x=1+1\Rightarrow x=2\)
\(6^{x+4}=6^{10}\Leftrightarrow x+4=10\Leftrightarrow x=10-4\Rightarrow x=6\)
\(5^{2x-7}=5^{11}\Leftrightarrow2x-7=11\Leftrightarrow2x=11+7\Leftrightarrow2x=18\Leftrightarrow x=18\div2\Rightarrow x=9\)
\(\left(-2\right)^{4x+2}=64\)
\(2^{-4x+2}=2^6\Leftrightarrow-4x+2=6\Leftrightarrow-4x=6-2\Leftrightarrow-4x=4\Leftrightarrow x=4\div\left(-4\right)\Rightarrow x=-1\)
\(\left(\frac{1}{2}\right)^x=\left(\frac{1}{2}\right)^5\Rightarrow x=5\)
\(\left(\frac{5}{6}\right)^{2x}=\left(\frac{5}{6}\right)^5\Rightarrow2x=5\Rightarrow x=\frac{5}{2}\)
\(\left(\frac{3}{4}\right)^{2x-1}=\left(\frac{3}{4}\right)^{5x-4}\Rightarrow2x-1=5x-4\)
\(2x-5x=-4+1\)
\(-3x=-3\Rightarrow x=1\)
\(\left(\frac{-1}{10}\right)^x=\frac{1}{100}\)
\(\left(\frac{1}{10}\right)^{-x}=\left(\frac{1}{10}\right)^2\Rightarrow-x=2\Rightarrow x=-2\)
\(\left(\frac{-3}{2}\right)^x=\frac{9}{4}\)
\(\left(\frac{3}{2}\right)^{-x}=\left(\frac{3}{2}\right)^2\Rightarrow-x=2\Rightarrow x=-2\)
\(\left(\frac{-3}{5}\right)^{2x}=\frac{9}{25}\)
\(\left(\frac{3}{5}\right)^{-2x}=\left(\frac{3}{5}\right)^2\Rightarrow-2x=2\Rightarrow x=-1\)
\(\left(\frac{-2}{3}\right)^x=\frac{-8}{27}\)
\(\left(\frac{-2}{3}\right)^x=\left(\frac{-2}{3}\right)^3\Rightarrow x=3\).
hehe. đánh tới què tay, hoa mắt lun r nekkk!!
\(a)A=\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(A=\dfrac{2^{12}.3^5-\left(2^2\right)^63.\left(3^2\right)^2}{\left(2^2\right)^6.3^6+\left(2^3\right)^4.3^5}-\dfrac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{\left(5^3\right)^3.7^3+5^9.\left(7.2\right)^3}\)
\(A=\dfrac{2^{12}.3^5-2^{12}.3^5}{2^{12}.3^6+2^{12}.3^5}-\dfrac{5^{10}.7^3-5^{10}.7^4}{5^6.7^3+5^9.7^3.2^3}\)
\(A=\dfrac{0}{2^{12}.3^6+2^{12}.3^5}-\dfrac{5^{10}.7^3\left(1-7\right)}{5^6.7^3\left(1+5^3+2^3\right)}\)
\(A=0-\dfrac{5^4.\left(-6\right)}{1+125+8}\)
\(A=0-\dfrac{625.\left(-6\right)}{134}\)
\(A=\dfrac{-3750}{134}\)\(=\dfrac{-1875}{67}\)
\(b)3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.3^2-2^n.2^2+3^n-2^n\)
\(=(3^n.9+3^n)-\left(2^n.4+2^n\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
\(Suy\) \(ra:\) \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
b. Ta có: \(3^{n +2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=\left(3^n.3^2+3^n\right)-\left(2^{n-1}.2^3+2^{n-1}.2\right)\)
\(=3^n.\left(3^2+1\right)-2^{n-1}\left(2^3+2\right)\)
\(=3^n.10-2^{n-1}.10⋮10\)
bài 1
B=23+43+63+...+203=2*(13+23+33+...+103)
=>B=2A