K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

1/ B = (x+y)((x+y)- 3xy)+(x+y)- 2xy = 2 - 5xy = 2 - 5x(1-x)=5x- 5x + 2 = (x√5 - √5 /2)+3/4 >= 3/4 

Đạt GTNN là 3/4 khi x=y=1/2

2/ P = xy = x(6-x)=-x+6x = 9 - (x-3)2 <=9 

GTLN là 9 khi x=y=3

12 tháng 9 2019

\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)  ( 1 )

\(\Leftrightarrow\left(\frac{1}{1+x^2}-\frac{1}{1+xy}\right)+\left(\frac{1}{1+y^2}-\frac{1}{1+xy}\right)\ge0\)

\(\Leftrightarrow\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+xy^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)     ( 2 )

\(\Rightarrow\)Bất đẳng thức ( 2 ) \(\Rightarrow\) Bất đẳng thức ( 1 ) 

( Dấu " = " xảy ra khi x = y ) 

Chúc bạn học tốt !!!

4 tháng 7 2019

\(\Leftrightarrow\frac{1}{1+x^2}-\frac{1}{1+xy}+\frac{1}{1+y^2}-\frac{1}{1+xy}\ge0.\)

\(\Leftrightarrow\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{x\left(y-x\right)\left(1+y^2\right)+y\left(x-y\right)\left(1+x^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{\left(x-y\right)\left(y+x^2y-x-xy^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{\left(x-y\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\left(lđ\forall x,y\ge1\right)\)

Dấu "=" xra khi x=y=1

5 tháng 8 2021

a) `x^2+y^2-2x+4y+5`

`=(x^2-2x+1)+(y^2+4y+4)`

`=(x-1)^2+(y+2)^2 >=0 forall x,y`

b) `-3x^2+2x-5`

`=-(3x^2-2x+5)`

`=-[(\sqrt3 x)^2 -2.\sqrt3 x .\sqrt3/3 + (\sqrt3/3)^2 +14/5]`

`=-(\sqrt3 x-\sqrt3/3)^2-14/5 < 0 forall x`

b) Ta có: \(-3x^2+2x-5\)

\(=-3\left(x^2-\dfrac{2}{3}x+\dfrac{5}{3}\right)\)

\(=-3\left(x^2-2\cdot x\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{14}{9}\right)\)

\(=-3\left(x-\dfrac{1}{3}\right)^2-\dfrac{14}{3}< 0\forall x\)