K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2017

bài 2 : 

a, abcdeg = ab.10000 + cd.100 + eg

             = ab.9999 + ab + cd.99 + cd + eg

             = (ab.9999 + cd.99) + (ab+cd+eg)

vì 9999 chia hết cho 11 => ab.9999 chia hết cho 11    (1)

    99 chia hết cho 11 => cd.99 chia hết cho 11          (2)

    theo đề bài (ab+cd+eg) chi hết cho 11                 (3)

(1)(2)(3) => abcdeg chia hết cho 11

phần b thì bạn chứng minh 10^28 + 8 chi hết cho 8 và 9 là được

20 tháng 12 2017

b, 1028+8 chia hết cho 9

1028+8=(1027*10)+8=10009+8 chia hết cho 8

(8,9)=1 nên 1028+8 chia hết cho 27

Ta có : abcdeg = ab.10000 + cd.100 + eg 

                         = ab.9999 + cd.99 + (ab + cd + eg)

                         = 99(ab.101 + cd) + (ab + cd + eg)

Vì 99(ab.101 + cd) chia hết cho 11 và  (ab + cd + eg) chia hết cho 11

Vậy abcdeg chia hết cho 11

3 tháng 4 2018

a) Ta có : abcdeg = ab . 10000 + cd . 100 + eg 

                             = ab . 9999 + ab + cd . 99 + cd + eg

                             = ab . 11 . 909 + ab + cd . 11 . 9 + cd + eg

                              = (ab . 909 + cd . 9) . 11 + (ab + cd + eg)

  Vì (ab . 909 + cd .9) . 11 ⋮ 11 và (ab + cd + eg) ⋮ 11 nên abcdeg ⋮ 11

23 tháng 7 2017

ai giúp mk mk tc cho 3 cái

24 tháng 9 2017

C: Dấu hiệu chia hết cho 11 : 

1 số chia hết cho 11 và chỉ khi tổng các số hàng chẵn / lẻ chia hết cho 11

Theo giả thiết /ab + /cd + /eg = 10a + b + 10c + d + 10e + g = 11. ( a + c + e ) + ( b +d + g ) - ( a + c + e ) chia hết cho 11

Suy ra : ( b + d + g ) - ( a + c + e ) chia hết cho 11 

Suy ra abcdeg chia hết cho 11 

C2 : Ta có

abcdeg = ab . 10000 = cd . 100 + eg

=  ( 9999ab )  +  ( 99cd )+ ( ab + cd + eg ) 

Vì 9999ab + 99cd chia hết cho 11 và ab + cd + eg chia hết cho 11

 Suy ra : abcdeg chia hết cho 11

( cách nào cũng đúng nha ) 

29 tháng 8 2016

a) 

Gọi d là ước chung của tử và mẫu 

=> 12n + 1 chia hết cho d              60n + 5 chia hết cho d 

                                        => 

 30n +2 chia hết cho d                      60n + 4 chia hết cho d 

=> ( 60n + 5 ) - ( 60n + 4 ) chia hết cho d 

=> 1 chia hết cho d 

=> d = 1 => ( đpcm )

1 tháng 3 2018

Câu a) làm rồi mình làm câu b) nhé 

\(b)\)Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

 Ta có : 

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy \(A< 1\)

18 tháng 3 2017

a, Ta có:\(\overline{abcdeg}\)=\(\overline{ab}.10000+\overline{cd}.100+\overline{eg}\)

\(=\overline{ab}.9999+\overline{ab}+\overline{cd}.99+\overline{cd}+\overline{eg}\)

\(=\left(\overline{ab}.9999+\overline{cd}.99\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)

Ta thấy \(\left(\overline{ab}.9999+\overline{cd}.99\right)⋮11\)

\(\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)

Vậy \(\overline{abcdeg}⋮11\)

30 tháng 3 2017

b, Ta có: 72=8.9

\(\Rightarrow10^{28}+8⋮8;9\)

Ta thấy: \(10^{28}\)gồm 1 chữ số 1 và 28 chữ số 0 đứng sau nó

\(\Rightarrow10^{28}+8\) gồm 1 chữ số 1, 27 chữ số 0 đứng sau và chữ số 8 ở tận cùng.

\(\Rightarrow10^{28}+8\) có tổng các chữ số là 9

\(\Rightarrow10^{28}+8⋮9\) (1)

Ta xét đến 3 chữ số tận cùng của \(10^{28}+8\)​là 0, 0, 8 và tổng của 3 chữ số đó là 8.

Mà 8\(⋮\)8 nên \(10^{28}+8⋮8\) (2)

Từ (1) và (2) suy ra \(10^{28}+8⋮72\)

27 tháng 12 2015

a) Đặt UCLN(12n  + 1 ; 60n  + 2) = d

12n + 1 chia hết cho d

=> 60n + 5 chia ehets cho d

30n + 2 chia hết cho d

60n + 4 chia hết cho d

< = > 1 chia hết cho d => d = 1 

28 tháng 12 2017

a) Ta có:
\(\overline{abcdeg}=10000.\overline{ab}+100.\overline{cd}+eg=9999.\overline{ab}+99.\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)\(9999.\overline{ab}⋮11\)
\(99.\overline{cd}⋮11\)
\(\overline{ab}+\overline{cd}+\overline{eg}⋮11\)
\(\Rightarrow9999.\overline{ab}+99.\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)hay \(\overline{abcdeg}⋮11\)(đpcm)
b) Ta có:
\(E=92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{92}{100}=\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...\left(1-\dfrac{92}{100}\right)=\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{100}=8.\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{100}\right)\)\(F=\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{100}\right)\)
\(\dfrac{E}{F}=\dfrac{8\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{100}\right)}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{100}\right)}=\dfrac{8}{\dfrac{1}{5}}=40\)

18 tháng 3 2017

a)\(ab+cd+eg⋮11\Rightarrow ab+999999\cdot ab+cd\cdot9999\cdot cd+eg+9999\cdot eg⋮11\)

\(\Rightarrow abcdeg⋮11\left(đpcm\right)\)

b) 10 chia 9 dư 1 nên 1028 chia 9 dư 1 => 1028 + 8 chia hết cho 9 

1028 có tận cùng là 28 chữ số 0, chia hết cho 8 => 1028 + 8 chia hết cho 8 

mà (8; 9) = 1 => 1028 + 8 chia hết cho 72 (đpcm)

18 tháng 3 2017

bạn nga nguyễn ơi, mik vẫn ko hiểu cách giải của bạn, hình như có gì đó sai sai hay sao ý

26 tháng 2 2017

Bài 1:

Ta có: \(\overline{ababab}=10101.\overline{ab}⋮3\)

\(\Rightarrow\overline{ababab}\in B\left(3\right)\left(đpcm\right)\)

Bài 3:

Đặt \(A=\frac{1}{2^2}+...+\frac{1}{2^n}\)

\(\Rightarrow2A=\frac{1}{2}+...+\frac{1}{2^{n-1}}\)

\(\Rightarrow2A-A=\frac{1}{2}-\frac{1}{2^n}\)

\(\Rightarrow A=\frac{1}{2}-\frac{1}{2^n}< 1\)

\(\Rightarrow A< 1\left(đpcm\right)\)