K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2020

e, \(x^3+5x^2+8x+4=x^3+x^2+4x^2+4x+4x+4\)

\(=x^2\left(x+1\right)+4x\left(x+1\right)+4\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+4x+4\right)=\left(x+1\right)\left(x+2\right)^2\)

d, \(27x^3-27x^2+18x-4=27x^3-9x^2-18x^2+6x+12x-4\)

\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)\)

\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)

16 tháng 10 2016

\(2x^2+3x-27=2x^2-6x+9x-27=2x\left(x-3\right)+9\left(x-3\right)=\left(2x+9\right)\left(x-3\right)\)

\(x^3-7x+6=x^3-x-6x+6=x\left(x^2-1\right)-6\left(x-1\right)=x\left(x-1\right)\left(x+1\right)-6\left(x-1\right)=\left(x-1\right)\left(x^2+x-6\right)\)

\(x^3+5x^2+8x+4=x^3+x^2+4x^2+8x+4=x^2\left(x+1\right)+4\left(x^2+2x+1\right)=x^2\left(x+1\right)+4\left(x+1\right)^2\)

\(=\left(x+1\right)\left(x^2+4x+4\right)=\left(x+1\right)\left(x+2\right)^2\)

\(27x^3-27x^2+18x-4=27x^3-9x^2-18x^2+6x+12x-4\)

\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)=\left(3x-1\right)\left(9x^2-6x+4\right)\)

11 tháng 10 2017

b)3x^2-18x+27=3x^2-9x-9x+27=3x*(x-3)-9*(x-3)=(x-3)*(3x-9)=(x-3)*3*(x-3)=3*(x-3)^2

c)x^3-4x^2-12x+27=(x+3)*(x^2-3x+9-4)=(x+3)*(x^2-3x+5)

d)27x^3-1/27=(3x-1/3)*(9x^2-x+1/9)   (hang dt)

con a) voi e) mk chiu

28 tháng 1 2020

i. (x2+y2+z2).(x+y+z)2+(xy+yz+zx)2

2 tháng 11 2018

\(x^8+x+1\)

\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)

\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+x^2+x+1\)

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)

29 tháng 1 2020

a)\(2x^3-x^2+5x+3=2x^3-2x^2+x^2+6x-x+3\)

\(=\left(2x^3-2x^2+6x\right)+\left(x^2-x+3\right)\)

\(=2x\left(x^2-x+3\right)+\left(x^2-x+3\right)\)

\(=\left(x^2-x+3\right)\left(2x+1\right)\)

b)\(27x^3-27x^2+18x-4=27x^3-18x^2-9x^2+12x+6x-4\)

\(=3x\left(9x^2-6x+4\right)-\left(9x^2-6x+4\right)\)

\(=\left(9x^2-6x+4\right)\left(3x-1\right)\)

c)\(4x^4-32x^2+1=4x^4+4x^2-36x^2+1\)

\(=\left(4x^4+4x^2+1\right)-36x^2\)

\(=\left(2x^2+1\right)^2-\left(6x\right)^2\)

\(=\left(2x^2+1+6x\right)\left(2x^2+1-6x\right)\)

9 tháng 8 2016

a)=-4x2+8x-4

=-[(2x)2-8x+4]

=-(2x-2)2

9 tháng 8 2016

b)=x3-3x2+3x2-9x+2x-6

=x2(x-3)+3x(x-3)+2(x-3)

=(x-3)(x2+3x+2)

=(x-3)(x2+x+2x+2)

=(x-3)[x(x+1)+2(x+1)]

=(x-3)(x+1)(x+2)

22 tháng 9 2020

Mình viết xuôi theo dạng ax2 + bx + c nhé ;-; cho dễ làm

a) 2x2 + 7x + 3 = 2x2 + x + 6x + 3 = x( 2x + 1 ) + 3( 2x + 1 ) = ( 2x + 1 )( x + 3 )

b) 3x2 - 8x + 4 = 3x2 - 6x - 2x + 4 = 3x( x - 2 ) - 2( x - 2 ) = ( x - 2 )( 3x - 2 )

c) 3x2 - 7x + 2 = 3x2 - 6x - x + 2 = 3x( x - 2 ) - ( x - 2 ) = ( x - 2 )( 3x - 1 )

d) -6x2 + 7x - 2 = -6x2 + 3x + 4x - 2 = -3x( 2x - 1 ) + 2( 2x - 1 ) = ( 2x - 1 )( 2 - 3x )

e) -3x2 + 7x - 2 = -3x2 + 6x + x - 2 = -3x( x - 2 ) + ( x - 2 ) = ( x - 2 )( 1 - 3x )

f) 2x2 - 5x + 2 = 2x2 - 4x - x + 2 = 2x( x - 2 ) - ( x - 2 ) = ( x - 2 )( 2x - 1 )

g) 3x2 - 8x + 4 = 3x2 - 6x - 2x + 4 = 3x( x - 2 ) - 2( x - 2 ) = ( x - 2 )( 3x - 2 )

h) 6x2 - 11x + 3 = 6x2 - 2x - 9x + 3 = 2x( 3x - 1 ) - 3( 3x - 1 ) = ( 3x - 1 )( 2x - 3 )

i) 2x2 + 3x - 27 = 2x2 - 6x + 9x - 27 = 2x( x - 3 ) + 9( x - 3 ) = ( x - 3 )( 2x + 9 )

j) 4x2 - 5x + 1 = 4x2 - 4x - x + 1 = 4x( x - 1 ) - ( x - 1 ) = ( x - 1 )( 4x - 1 )

20 tháng 7 2018

a)    \(x^3+3x^2y-9xy^2+5y^3\)

\(=x^3-3x^2y+3xy^2-y^3+6x^2y-12xy^2+6y^3\)

\(=\left(x-y\right)^3+6y\left(x^2-2xy+y^2\right)\)

\(=\left(x-y\right)^3+6y\left(x-y\right)^2\)

\(=\left(x-y\right)^2\left(x+5y\right)\)

20 tháng 7 2018

b)    \(27x^3-27x^2+18x-4\)

\(=27x^3-9x^2-18x^2+6x+12x-4\)

\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)\)

\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)

c) \(2x^3-x^2+5x+3\)

\(=2x^3+x^2-2x^2-x+6x+3\)

\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)

\(=\left(2x+1\right)\left(x^2-x+3\right)\)

2 tháng 4 2020

a. x3+5x2+3x-9

= x3-x2+6x2-6x+9x-9

= x2(x-1)+6x(x-1)+9(x-1)

= (x2+6x+9)(x-1)

= (x+3)2(x-1)

b. x3+9x2+11x-21

= x3-x2+10x2-10x+21x-21

= x2(x-1)+10x(x-1)+21(x-1)

= (x2+10x+21)(x-1)

= (x+7)(x+3)(x-1)

c. x3-7x+6

= x3-x2+x2-x-6x+6

= x2(x-1)+x(x-1)-6(x-1)

= (x2+x-6)(x-1)

= (x+3)(x-2)(x-1)

d. x3-5x2+8x-4

= x3-x2-4x2+4x+4x-4

= x2(x-1)-4x(x-1)+4(x-1)

= (x2-4x+4)(x-1)

= (x-2)2(x-1)

e. x3-3x+2

= x3+2x2-2x2-4x+x+2

= x2(x+2)-2x(x+2)+(x+2)

= (x2-2x+1)(x+2)

= (x-1)2(x+2)

f. x3+8x2+17x+10

= x3+5x2+3x2+15x+2x+10

= x2(x+5)+3x(x+5)+2(x+5)

= (x2+3x+2)(x+5)

= (x+1)(x+2)(x+5)

g. x3+3x2+6x+4

= x3+x2+2x2+2x+4x+4

= x2(x+1)+2x(x+1)+4(x+1)

= (x2+2x+4)(x+1)

h. x3-2x-4

= x3-2x2+2x2-4x+2x-4

= x2(x-2)+2x(x-2)+2(x-2)

= (x2+2x+2)(x-2)

k. x3+x2+4

= x3+2x2-x2-2x+2x+4

= x2(x+2)-x(x+2)+2(x+2)

= (x2-x+2)(x+2)

l. x3-12x+7x-2

= x3+2x2-2x2-4x-x-2

= x2(x+2)-2x(x+2)-(x+2)

= (x2-2x-1)(x+2)

2 tháng 4 2020

thansk you

6 tháng 10 2018

\(a.x^3-6x=x^3-4^3=\left(x-4\right)\left(x^2+4x+16\right)\)

\(b.x^4+6x^3+11x^2+6x+1=x^4+6x^3+9x^2+2x^2+6x+1\)

\(=\left(x^2+3x+1\right)^2\)

\(c.x^2+3x+2=x^2+x+2x+2=x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(x+2\right)\)

\(d.x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

\(=x\left(x+3\right)\left(x+1\right)\left(x+2\right)+1=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)

Đặt \(x^2+3x=y\Rightarrow y\left(y+2\right)+1=y^2+2y+1=\left(y+1\right)^2\)

Thay \(y=x^2+3x\) ta được: \(\left(y+1\right)^2=\left(x^2+3x+1\right)^2\)

\(e.x^3+9x^2+27x+27=\left(x+3\right)^3\)

\(f.\left(x+1\right)\left(x+7\right)\left(x^2+8x+15\right)+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(a=x^2+8x+11\Rightarrow\left(a-4\right)\left(a+4\right)+15=a^2-16+15=a^2-1=\left(a+1\right)\left(a-1\right)\)

Thay \(a=x^2+8x+11\) ta được: \(\left(a+1\right)\left(a-1\right)=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)

6 tháng 10 2018

\(x^3-6x=x^3-64\) ??? . Căng nhể -.-