K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

Answer:

Câu 1:

Số ban đầu \(222...2\) (Gồm mười lăm chữ số 2)

Tổng các chữ số

\(15\times2=30\)

Khi cộng thêm các chữ số 0 vào thì tổng sẽ là 30

=> Chia hết cho 3 nhưng lại không chia hết cho 9

Vậy không còn cách nào để thêm

Câu 2:

Số đó là \(1223334444\)

Tổng các chữ số

\(1+2\times2+3\times3+4\times4=30\)

=> 1223334444 chia hết cho 3

=> Để 1223334444 là số chính phương thì 122333444 chia hết cho 9

Mà 30 thì không chia hết cho 9

Vậy 122333444 không phải là số chính phương.

28 tháng 12 2021

1 số tự nhiên chia \(⋮\)k thì phải \(⋮\)k2 
  Gọi số tự nhiên gồm 15 chữ số 2 là a(a \(\in\)N)
Khi thêm các c/s 0 tùy ý vào vị trí thì tổng các c/s của a ko thay đổi và vẫn là 15 . 2=30
1 số có tổng các c/s \(⋮\)3 thì \(⋮\)3
=> Số a hay số mới phải \(⋮\)3
Giả sử có cách viết thêm các c/s 0 vào vị trí tùy ý để số mới tạo thành 1 số chính phương
=> Số mới là 1 số chính phương 
=> Số mới \(⋮\)3 => số mới phải \(⋮\)9
Mà 30 ko chia hết cho 9 => số mới ko chia hết cho 9 (vô lý)
=> giả sử sai 
     Vậy ko có cách nào để viết thêm c/s 0 vào vị trí tùy ý để tạo thành là 1 số chính phương

11 tháng 4 2017

1) ta có A = n^2+n+1 = n^2+n+n-n-1 = n(n+1)+1(n+1)+1(n+1) = (n+1)(n+1)+1 = (n+1)^2 +1

(n+1)^2+1=0

=> n+1=1                                                       =>n+1=-1

                    

=>n=0                                                           =>n=-2(loại)

vậy n=0

28 tháng 3 2016

a/ Với n=0 ta có 2.1+1=3 chia hết cho 3

Giả sử \(2.7^n+1\)  đúng với n=k => \(2.7^k+1\) chia hết cho 3

Ta cần chứng minh \(2.7^{k+1}+1\) cũng chia hết cho 3

Thật vậy ta có

\(2.7^{k+1}+1=2.7.7^k+7-6=7\left(2.7^k+1\right)-6\)

Ta thấy \(2.7^k+1\) chia hết cho 3 và 6 chia hết cho 3 nên \(2.7^{k+1}+1\) chia hết cho 3

Kết luận: Với mọi số tự nhiên n ta có 2.7^n+1 chia hết cho 3

b/

2 tháng 10 2017

Ta có: 2*7^n là số chẵn -> (2*7^n)+1 chia hết cho 2+1=3

8 tháng 1 2017

de ma ban

8 tháng 1 2017

giải hộ mình đi

mình ko biết làm

16 tháng 6 2018

10 \(\le\)\(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298

Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương

=> 2n + 1 thuộc { 25 ; 49  ; 81 ; 121 ;  169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )

Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298

=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )

Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương

29 tháng 11 2018

bài cô giao đi hỏi