Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai phát hiện sai đề thì sửa và làm giúp mk hộ với, cảm ơn :) (chỉ cần làm tóm tắt thôi)
Câu 1 chuyên phan bội châu
câu c hà nội
câu g khoa học tự nhiên
câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ
câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)
Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !
Câu c quen thuộc, chém trước:
Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)
Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)
Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)
\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)
Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)
\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)
Done.
Bài 2:
a)Ta có: \({\left( {x + 2y} \right)^2} \le \left( {1 + 1} \right)\left( {{x^2} + 4{y^2}} \right) \Rightarrow \dfrac{{\left( {{x^2} + 4{y^2}} \right)}}{2} \ge \sqrt {\dfrac{{{{\left( {x + 2y} \right)}^2}}}{4}} \Leftrightarrow \dfrac{{\left( {{x^2} + 4{y^2}} \right)}}{2} \ge \dfrac{{\left| {x + 2y} \right|}}{2} \)Mặt khác ta cũng có:
\( \dfrac{{{x^2} + 2xy + 4{y^2}}}{3} = \dfrac{{3{{\left( {x + 2y} \right)}^2} + {{\left( {x - 2y} \right)}^2}}}{{12}} \ge \dfrac{{{{\left( {x + 2y} \right)}^2}}}{4}\\ \Rightarrow \sqrt {\dfrac{{{x^2} + 2xy + 4{y^2}}}{3}} \ge \dfrac{{\left| {x + 2y} \right|}}{2} \)
Từ đó suy ra: \(\sqrt {\dfrac{{{x^2} + 4{y^2}}}{2}} + \sqrt {\dfrac{{{x^2} + 2xy + 4{y^2}}}{3}} \ge \left| {x + 2y} \right| \ge x + 2y \)
Dấu bằng xảy ra khi và chỉ khi \(x=2y\ge0\)
Thay vào phương trình còn lại ta thu được:
\({x^4} - {x^3} + 3{x^2} - 2x - 1 = 0 \Leftrightarrow \left( {x - 1} \right)\left( {{x^3} + 3x + 1} \right) = 0 \Leftrightarrow x = 1 \Rightarrow y = \dfrac{1}{2} \)
Vậy nghiệm của hệ phương trình là: \(\left( {1;\dfrac{1}{2}} \right) \)
\(\boxed{Nguyễn Thành Trương}\)
Bài 1: a liên hợp là ra mà nhỉ?
a) ĐK: \(x>-3\)
Mặt khác \(PT\Leftrightarrow\sqrt{\frac{1}{x+3}}-2+\sqrt{\frac{5}{x+4}}-2=0\)
\(\Leftrightarrow\frac{\frac{1}{x+3}-4}{\sqrt{\frac{1}{x+3}}+2}+\frac{\frac{5}{x+4}-4}{\sqrt{\frac{5}{x+4}}+2}=0\)
\(\Leftrightarrow\frac{-\left(x+\frac{11}{4}\right)}{\left(x+3\right)\left(\sqrt{\frac{1}{x+3}}+2\right)}+\frac{-\left(x+\frac{11}{4}\right)}{\left(x+4\right)\left(\sqrt{\frac{5}{x+4}}+2\right)}=0\) (quy đồng cái tử lên thôi)
\(\Leftrightarrow\left(x+\frac{11}{4}\right)\left[\frac{-1}{\left(x+3\right)\left(\sqrt{\frac{1}{x+3}}+2\right)}+\frac{-1}{\left(x+4\right)\left(\sqrt{\frac{5}{x+4}}+2\right)}\right]=0\)
Cái ngoặc to nhìn liếc qua cũng thấy nó < 0.
Do đó \(x=-\frac{11}{4}\)
P/s: Về cơ bản hướng làm là vậy, khi là sẽ có thể có những sai sót, do em bị hư máy tính cầm tay:v. Đang rất GP đây này@@
\(\text{~tth~}\) |
Bài 1.
1. \(\sqrt{-3x+6}\) có nghĩa khi \(-3x+6\ge0\Leftrightarrow-3x\ge-6\Rightarrow x\le2\)
2.
\( a){\left( {\sqrt 7 - \sqrt 5 } \right)^2} + 2\sqrt {35} = 7 - 2\sqrt {35} + 5 + 2\sqrt {35} = 12\\ b)3\sqrt 8 - \sqrt {50} - \sqrt {{{\left( {\sqrt 2 - 1} \right)}^2}} = 6\sqrt 2 - 5\sqrt 2 - \sqrt 2 + 1 = 1 \)
Bài 2.
\( M = \dfrac{{\sqrt a + 3}}{{\sqrt a - 2}} - \dfrac{{\sqrt a - 1}}{{\sqrt a + 2}} + \dfrac{{4\sqrt a - 4}}{{4 - a}}\\ M = \dfrac{{\left( {\sqrt a + 2} \right)\left( {\sqrt a + 3} \right) - \left( {\sqrt a - 2} \right)\left( {\sqrt a - 1} \right) - \left( {4\sqrt a - 4} \right)}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a + 2} \right)}}\\ M = \dfrac{{4\sqrt a + 8}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a + 2} \right)}}\\ M = \dfrac{{4\left( {\sqrt a + 2} \right)}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a + 2} \right)}}\\ M = \dfrac{4}{{\sqrt a - 2}} \)
Bài 3.
1.
\( a)\sqrt {{{313}^2} - {{312}^2}} + \sqrt {{{17}^2} - {8^2}} = \sqrt {\left( {313 - 312} \right)\left( {313 + 312} \right)} + \sqrt {\left( {17 - 8} \right)\left( {17 + 8} \right)} \\ = \sqrt {625} + \sqrt {9.25} = 25 + 3.5 = 25 + 15 = 40\\ b)\dfrac{{2 + \sqrt 2 }}{{1 + \sqrt 2 }} = \dfrac{{\sqrt 2 \left( {\sqrt 2 + 1} \right)}}{{1 + \sqrt 2 }} = \sqrt 2 \)
2. \(\left\{{}\begin{matrix}2x+y=3\\3x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+2y=6\\3x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x=7\\2x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm duy nhất \(\left(1;1\right)\)
3.
\( \sqrt {9\left( {x - 1} \right)} = 21\\ \Leftrightarrow 3\sqrt {x - 1} = 21\\ \Leftrightarrow \sqrt {x - 1} = 7\\ \Leftrightarrow x - 1 = 49\\ \Leftrightarrow x = 50 \)
Thử lại $x=50$ là nghiệm
ông ngồi đánh hết cũng tài :v