Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi a,b,c lần lượt là số cây của ba lớp 7A,7B,7C trồng được[a,b,c>0][cây] theo đề ta có:a\2=b\3=c\4 và a+c-b=60 áp dụng tính chất dãy tỉ số bằng nhau ,ta có: a\2=b\3=c\4=a+c-b\2+4-3=60\3=20 a\2=20suy ra a=20.2=40[cây] b\3=20suy ra b=20.3=60[cây] c\4=20suy ra c=20.4=80[cây] vậy số cây của ba lớp 7A, 7B, 7C trồng được là 40, 60, 80 cây
gọi a,b,c lần lượt là số cây của ba lớp 7A,7B,7C trồng được[a,b,c>0][cây]
theo đề ta có:a\2=b\3=c\4 và a+c-b=60
áp dụng tính chất dãy tỉ số bằng nhau ,ta có:
a\2=b\3=c\4=a+c-b\2+4-3=60\3=20
a\2=20suy ra a=20.2=40[cây]
b\3=20suy ra b=20.3=60[cây]
c\4=20suy ra c=20.4=80[cây]
vậy số cây của ba lớp 7A, 7B, 7C trồng được là 40, 60, 80 cây
Gọi số cây trồng được của 3 lớp 7A ; 7B ; 7C lần lượt là x,y,z (x,y,z \(\inℕ^∗\))
Theo bài ra ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và \(2x-y=8\)
=> \(\frac{2x}{4}=\frac{y}{3}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau có:
\(\frac{2x}{4}=\frac{y}{3}=\frac{z}{5}=\frac{2x-y}{2.2-3}=\frac{8}{1}=8\)
=> x = 8 . 2 =16
y = 8 . 3 = 24
z = 8 . 5 = 40
Vậy............................................
Học tốt
Gọi số cây trồng 3 lớp lần lượt là \(a,b,c\left(a,b,c>0\right)\)
Áp dụng TCDTSBN:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{\left(a+c\right)-b}{\left(3+5\right)-4}=\dfrac{20}{4}=5\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\cdot5=15\left(cay\right)\\b=4\cdot5=20\left(cay\right)\\c=5\cdot5=25\left(cay\right)\end{matrix}\right.\)
Gọi cây của 3 lớp lần lượt là: x, y, z(cây);(x, y, z thuộc (vt kí hiệu nhé)N*)
Vì số cây của 3 lớp lần lượt tỉ lệ với 3, 5, 8
=>x/3=y/5=z/8 và x+y+z=256(cây)
Áp dụng tính chất dãy tỉ số bằng nhau
Ta có:x/3=y/5=z/8=x+y+z/3+5+8=256/16=16
=>x=16.3=48(cây)
y=16.5=80(cây) {TMĐK}
z=16.8=128(cây)
Vậy số cây trồng được của lớp 7A: 48 cây
-----------------------------------------7B: 80 cây
-----------------------------------------7C: 128 cây
Bài này mk làm theo cô mk hướng dẫn nhé, sai thì cho mk xin lỗi. Chúc bạn làm bài tốt :))
Gọi số cây trồng của 3 lớp 7A, 7B và 7C là a,b và c. (a,b,c > 0); (cây).
Theo bài ra ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\) ; c - a= 20
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{c-a}{5-3}=\dfrac{20}{2}=10\)
\(=>\dfrac{a}{3}=10=>a=3.10=30\)
\(=>\dfrac{b}{4}=10=>b=4.10=40\)
\(=>\dfrac{c}{5}=10=>c=5.10=50\)
Vậy 3 lớp 7A, 7B, 7C trồng được số cây lần lượt là 30, 40 và 50 cây.
Gọi số cây trồng của lớp 7A,7B,7C lần lưpựt là:x;y;z(cây)(x;y;z∈N*)
Vì x;y;z tỉ lệ lần lượt với 3;4;5 nên
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Vì tổng số cây trồng được của lớp 7C nhiều hơn lớp 7A là 20 cây nên
z-x=20
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{z-x}{5-2}=\dfrac{20}{2}=10\)
Dó đó:\(\dfrac{x}{3}=10\Rightarrow x=3.10=30\)(Thỏa mãn)
\(\dfrac{y}{4}=10\Rightarrow y=4.10=40\)(Thỏa mãn)
\(\dfrac{z}{5}=10\Rightarrow z=5.10=50\)(Thỏa mãn)
Vậy lớp 7A trồng được 30 cây
lớp 7B trồng được 40 cây
lớp 7C trồng được 50 cây
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+c-b}{2+4-3}=\dfrac{60}{3}=20\)
Do đó: a=40; b=60; c=80
Gọi số cây lớp 7A,7B,7C trồng được lần lượt là a(cây), b(cây),c(cây)
(Điều kiện: \(a\in Z^+;b\in Z^+;c\in Z^+\))
Số cây của lớp 7A,7B,7C lần lượt tỉ lệ với 6;4;5 nên ta có:
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{5}\)
Tổng số cây trồng được của 2 lớp 7A,7B nhiều hơn của lớp 7C là 50 cây nên ta có: a+b-c=50
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b-c}{6+4-5}=\dfrac{50}{5}=10\)
=>a=60;b=40;c=50
Vậy: Lớp 7A trồng được 60 cây
Lớp 7B trồng được 40 cây
Lớp 7C trồng được 50 cây
Gọi a,b,c lần lượt là số cây trồng được của 7A,7B,7C ta có:
\(\frac{a}{5}\)= \(\frac{b}{4}\)=\(\frac{c}{3}\)= \(\frac{a-c}{5-3}\)= \(\frac{18}{2}\)= 9
+) \(\frac{a}{5}\)= 9 => a = 5 . 9 = 45 (cây)
+) \(\frac{b}{4}\)= 9 => b = 4 . 9 = 36 (cây)
+) \(\frac{c}{3}\)= 9 => c = 3 . 9 =27 (cây)
Vậy số cây của 3 lớp trồng được là: 7A = 45 cây
7B = 36 cây
7C = 27 cây
Gọi số cây của ba lớp 7A , 7B , 7C trồng được lần lượt lần lượt là x , y , z ( cây ) \(\left(x,y,z\inℕ^∗\right)\)
Theo bài ra ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}\) và \(x+y+z=256\)
Áp dụng tính chất của dãy tỉ số bằng nahu ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}=\frac{x+y+z}{3+5+8}=\frac{256}{16}=16\)
\(\Rightarrow x=16.3=48\) ( t/m)
\(y=16.5=80\)(t/m)
\(z=16.8=128\)(t/m)
Vậy số cây của ba lớp 7A , 7B , 7C trồng được lần lượt là : \(48;80;128\) cây
Gọi số cây trồng được của 3 lớp 7A ; 7B ; 7C lần lượt là a ; b ;c \(\left(a;b;c\inℕ^∗\right)\)
Theo bài ra ta có : \(\frac{a}{3}=\frac{b}{5}=\frac{c}{8};a+b+c=256\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{8}=\frac{a+b+c}{3+5+8}=\frac{256}{16}=16\)
=> \(\hept{\begin{cases}a=16.3=48\\b=16.5=80\\c=16.8=128\end{cases}}\)
Vậy lớp 7A tròng được 48 cây ; lớp 7B trồng được 80 cây ; lớp 7C trồng được 128 cây