Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(n-2\ne0\Leftrightarrow n\ne2\)
b) \(\frac{15}{n-2}\in Z\) khi \(n-2\inƯ\left(15\right)\)
\(\Leftrightarrow n-2\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
đến đây tự lập bảng rồi làm
a, n-2 khác 0 nên n khác 2
b, n-2 là ước của 15 vậy n-2 = { +-1;+-3;+-5;+-15} tương ứng ta có
n-2 = -1 => n=1 Tm
n-2 =1 => n=3 Tm
n-2=3 => n= 5 Tm
tương tự tìm các giá trị còn lại nhé
ks cho mình nhé
B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)
=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)
Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)
<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}
Lập bảng:
2n + 3 | 1 | -1 | 17 | -17 |
n | -1 | -2 | 7 | -10 |
Vậy ....
Bài 2:
Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)
\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)
=> 42n-7-42n+6 chia hết cho d
=> -1 chia hết cho d
mà d thuộc N* => d=1
=> ƯCLN (7n-1; 6n-1)=1
=> đpcm
Để M nguyên thì 4n+9 chia hết cho 2n+3
<=> 2(2n+3) +3 chia hết cho 2n+3
=> 3 chia hết cho 2n+3
Vì n nguyên nên 2n+3 là ước của 3
Các ước của 3 là 3;1;-1;-3
Do đó,2n+3 thuộc {3;1;-1;-3}
=> n thuộc {0;-0,5;-2;-3}
Vì n nguyên nên n thuộc {0;-2;-3}
Vậy ...
b, chứng minh tương tự nhưng tử ko chia hết cho mẫu
a) Để \(M=\frac{4n+9}{2n+3}\)\(\inℤ\)
\(\Rightarrow4n+9⋮2n+3\)
\(\Rightarrow\)\(2(2n+3)+3⋮2n+3\)
Mà 2(2n+3) chia hết cho 2n+3
=> 2 chia hết cho 2n +3
=> 2n+3 \(\inƯ\left(3\right)\)
TA CÓ BẢNG SAU : ( Lập bảng nha )
phần b mik chưa nghĩ ra nha
vì n-1 và n-2 là 2 số tự nhiên liên tiếp
suy ra phân số n-1/n-2 là phân số tối giản
k mik nha
Ta chứng minh tính chất : Hai số nguyên liên tiếp khác 0 luôn nguyên tố cùng nhau
Thật vậy :
Gọi 2 số nguyên liên tiếp khác 0 đó là \(a\)và \(a+1\)(\(a\notin\left\{0;-1\right\}\))
Gọi \(d=ƯCLN\left(a;a+1\right)\)\(\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}a⋮1\\a+1⋮d\end{cases}}\)
\(\Rightarrow\left(a+1\right)-a⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(a;a+1\right)=1\)
\(\Rightarrow a\)và \(a+1\)nguyên tố cùng nhau với \(a\notin\left\{0;-1\right\}\)
Áp dụng :
Để \(A=\frac{n-1}{n-2}\left(n\ne2\right)\)là phân số tối giản
\(\LeftrightarrowƯCLN\left(n-1;n-2\right)=1\)
\(\Leftrightarrow n-1\ne0\)(do \(n\ne2\Rightarrow n-2\ne0\)và \(n-1\)và \(n-2\)là hai số nguyên liên tiếp)
\(\Leftrightarrow n\ne1\)
Vậy \(n\notin\left\{1;2\right\}\)thì A tối giản
a) Điều kiện để mẫu số của A khác 0 là n khác 3
Nếu n=14 thay vào A có A =\(\frac{6}{14-3}=\frac{6}{11}\)
Nếu n=5 thay vào A có: A=\(\frac{6}{5-3}=\frac{6}{2}=3\)
Nếu n=3 ko thỏa mãn điều kiện => ko tìm được giá trị của A
b) Có \(n\inℤ\Rightarrow n-3\inℤ\)
Có \(A\inℤ\Leftrightarrow\frac{6}{n-3}\inℤ\Leftrightarrow n-3\inƯ\left(6\right)\)( Vì \(n-3\inℤ\))
Mà \(Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
\(\Rightarrow n-3\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
\(\Rightarrow n\in\left\{4;2;5;1;6;0;9;-3\right\}\)(Thỏa mãn điều kiện n khác 3 và \(n\inℤ)\)
Vậy \(n\in\left\{4;2;5;1;6;0;9;-3\right\}\)thì \(A\inℤ\)
..... k cho mk nhoa :))))))))......
BÀi 1
Để A \(\in\) Z
=>\(\left(n+2\right)⋮\left(n-5\right)\)
=>\([\left(n-5\right)+7]⋮\left(n-5\right)\)
=>\(7⋮\left(n-5\right)\)
=>\(n-5\in\left\{1;7;-1;-7\right\}\)
=>\(n\in\left\{6;13;4;-2\right\}\)
Vậy \(n\in\left\{6;13;4;-2\right\}\)
Gọi d là ước chung nguyên tố của 2n + 3 và 4n + 1
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\4n+1⋮d\end{matrix}\right.\)
+) Vì : \(2n+3⋮d;2\in N\)
\(\Rightarrow2\left(2n+3\right)⋮d\Rightarrow4n+6⋮d\)
Mà : \(4n+1⋮d\)
\(\Rightarrow\left(4n+6\right)-\left(4n+1\right)⋮d\)
\(\Rightarrow4n+6-4n-1⋮d\Rightarrow5⋮d\)
\(\Rightarrow\) d là ước của 5 ; d nguyên tố
\(\Rightarrow d=5\)
Với \(d=5\Rightarrow4n+1⋮5\)
\(\Rightarrow5n-n+1⋮5\Rightarrow5n-\left(n-1\right)⋮5\)
Vì : \(n\in N\Rightarrow5n⋮5\)
\(\Rightarrow n-1⋮5\Rightarrow n-1=5k\Rightarrow n=5k+1\)
Thử lại : n = 5k + 1 ( \(k\in N\))
\(2n+3=2\left(5k+1\right)+3=10k+5=5\left(2k+1\right)⋮5\)
\(4n+1=4\left(5k+1\right)+1=20k+5=5\left(4k+1\right)⋮5\)
\(\Rightarrow\) Với n = 5k + 1 thì phân số trên rút gọn được
\(\Rightarrow n\ne5k+1\) thì phân số trên tối giản
Vậy \(n\ne5k+1\)
Hai câu cuối tương tự
3. Gọi d là ƯCLN(2n + 3, 4n + 8), d ∈ N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n + 3 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)
\(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản.
Bài 6:
a:
ĐKXĐ: \(n\ne2\)
Để A>0 thì \(\dfrac{7}{n-2}>0\)
=>n-2>0
=>n>2
b:
ĐKXĐ: n<>1
Để B>0 thì \(\dfrac{n-1}{n-2}>0\)
=>\(\left[{}\begin{matrix}n-2>0\\n-1< 0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}n>2\\n< 1\end{matrix}\right.\)
Bài 5:
ĐKXĐ: n<>3
Để P là số nguyên thì \(n^2-2n+2⋮n-3\)
=>\(n^2-3n+n-3+5⋮n-3\)
=>\(5⋮n-3\)
=>\(n-3\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{4;2;8;-2\right\}\)