Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}\)
\(=a\sqrt{a}-b\sqrt{b}+a\sqrt{b}-b\sqrt{a}\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)-\left(\sqrt{a}-\sqrt{b}\right)\sqrt{ab}\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b-\sqrt{ab}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+b\right)\)
b) \(x-y+\sqrt{xy^2}-\sqrt{y^3}\)
\(=\left(x-y\right)+\left(y\sqrt{x}-y\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+y\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+y\right)\)
a, \(5+\sqrt{5}=\sqrt{5}\left(\sqrt{5}+1\right)\)
b, \(a-2\sqrt{a}=\sqrt{a}\left(\sqrt{a}-2\right)\)
c, \(x-\sqrt{xy}=\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)\)
d, \(x-y-\sqrt{x}-\sqrt{y}\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}-1\right)\)
3/a) \(BĐT\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\)(đúng với mọi x, y không âm)
Đẳng thức xảy ra khi x = y
b) \(BĐT\Leftrightarrow\frac{\left(x-y\right)^2}{xy}\ge0\) (đúng với mọi x, y không âm)
"=" <=> x = y
c) BĐT \(\Leftrightarrow2a+2b+2\ge2\sqrt{ab}+2\sqrt{a}+2\sqrt{b}\)
\(\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(a-2\sqrt{a}+1\right)+\left(b-2\sqrt{b}+1\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{a}-1\right)^2+\left(\sqrt{b}-1\right)^2\ge0\) (đúng)
"=" <=> a = b = 1
1/ \(A=\sqrt{7-2\sqrt{7}.1+1}-\sqrt{7-2\sqrt{7}.\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{7}-1\right|-\left|\sqrt{7}-\sqrt{2}\right|\) (thực ra em nghĩ ko cần thêm trị tuyệt đối đâu nhưng thêm cho chắc:D)
\(=\sqrt{7}-1-\sqrt{7}+\sqrt{2}=\sqrt{2}-1\)
2/Em thấy nó sai sai nên thôi:(
b4 :
\(a,x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(b,x-5=\left(\sqrt{x}-\sqrt{5}\right)\left(\sqrt{x}+\sqrt{5}\right)\)
\(c,x+2\sqrt{xy}+y=\left(\sqrt{x}+\sqrt{y}\right)^2\)
\(d,x-4\sqrt{x}\sqrt{y}+4y=\left(\sqrt{x}-2\sqrt{y}\right)^2\)
b5:
\(a,ĐK:x\ge1\)
\(\sqrt{9\left(x-1\right)}+\sqrt{4\left(x-1\right)}-\frac{4}{5}\sqrt{25\left(x-1\right)}=1\)
\(\Leftrightarrow3\sqrt{x-1}+2\sqrt{x-1}-4\sqrt{x-1}=1\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x=2\left(tm\right)\)
\(b,ĐK:x\ge5\)
\(\frac{1}{3}\sqrt{9\left(x-5\right)}+\frac{1}{2}\sqrt{4\left(x-5\right)}-\frac{7}{5}\sqrt{25\left(x-5\right)}=2\)
\(\Leftrightarrow\sqrt{x-5}+\sqrt{x-5}-7\sqrt{x-5}=2\)
\(\Leftrightarrow-5\sqrt{x-5}=2\)
\(\Leftrightarrow\sqrt{x-5}=-\frac{2}{5}\left(voli\right)\)
\(c,ĐK:x>0\)
\(\sqrt{x}+\frac{9}{\sqrt{x}}=6\)
\(\Leftrightarrow x+9=6\sqrt{x}\)
\(\Leftrightarrow x-6\sqrt{x}+9=0\)
\(\Leftrightarrow\left(\sqrt{x}-3\right)^2=0\)
\(\Leftrightarrow x=9\left(tm\right)\)
a)\(3-\sqrt{3}+\sqrt{15}-3\sqrt{5}=\sqrt{3}\left(\sqrt{3}-1\right)-\sqrt{15}\left(\sqrt{3}-1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{15}\right)=\sqrt{3}\left(\sqrt{3}-1\right)\left(1-\sqrt{5}\right)\)\(\)b)\(\sqrt{1-a}+\sqrt{1-a^2}=\sqrt{1-a}.1+\sqrt{1-a}.\sqrt{1+a}=\sqrt{1-a}\left(\sqrt{1+a}+1\right)\)
c)\(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b+\sqrt{ab}\right)=\left(\sqrt{a}-\sqrt{b}\right)\left(a+2\sqrt{ab}+b\right)=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)^2\)
c)
$\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}$
$=(\sqrt{a^3}+\sqrt{a^2b})-(\sqrt{b^3}+\sqrt{ab^2})$
$=\sqrt{a^2}(\sqrt{a}+\sqrt{b})-\sqrt{b^2}(\sqrt{b}+\sqrt{a})$
$=a(\sqrt{a}+\sqrt{b})-b(\sqrt{b}+\sqrt{a})$
$=(\sqrt{a}+\sqrt{b})(a-b)=(\sqrt{a}+\sqrt{b})^2(\sqrt{a}-\sqrt{b})$
d)
$x-y+\sqrt{xy^2}-\sqrt{y^3}$
$=(x-y)+(\sqrt{xy^2}-\sqrt{y^3})$
$=(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})+y(\sqrt{x}-\sqrt{y})$
$=(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y}+y)$
a)
$3-\sqrt{3}+\sqrt{15}-3\sqrt{15}$
$=\sqrt{3}(\sqrt{3}-1)-\sqrt{15}(3-1)$
$=(\sqrt{3}(\sqrt{3}-1)-\sqrt{15}(\sqrt{3}+1)(\sqrt{3}-1)$
$=(\sqrt{3}-1)[\sqrt{3}-\sqrt{15}(\sqrt{3}+1)]$
$=(\sqrt{3}-1)(\sqrt{3}-\sqrt{45}-\sqrt{15})$
b)
$\sqrt{1-a}+\sqrt{1-a^2}=\sqrt{1-a}+\sqrt{(1-a)(1+a)}$
$=\sqrt{1-a}+\sqrt{1-a}.\sqrt{1+a}=\sqrt{1-a}(1+\sqrt{1+a})$
a)\(a-5\sqrt{a}=\sqrt{a}\left(\sqrt{a}-5\right)\)
b)\(a-7=\left(\sqrt{a}-\sqrt{7}\right)\left(\sqrt{a}+\sqrt{7}\right)\)
c)\(a+4\sqrt{a}+4=\left(\sqrt{a}+2\right)^2\)
d)\(\sqrt{xy}-4\sqrt{x}+3\sqrt{y}-12=\sqrt{x}\left(\sqrt{y}-4\right)+3\left(\sqrt{y}-4\right)=\left(\sqrt{x}+3\right)\left(\sqrt{y}-4\right)\)
em cảm ơn ạ