K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2021

a: \(B=3+3^2+3^3+...+3^{120}\)

\(=3\left(1+3+3^2+...+3^{119}\right)⋮3\)

b: \(B=3+3^2+3^3+3^4+...+3^{2020}\)

\(=3\left(1+3\right)+...+3^{2019}\left(1+3\right)\)

\(=4\cdot\left(3+...+3^{2019}\right)⋮4\)

17 tháng 10 2021

undefined

2 tháng 11 2018

mk làm câu A = ... nha

ta có A = 3 + 33 + 35 + ...+31991

A = ( 3 + 33 + 35 ) + ( 37 + 3 9 + 311 ) + ... + ( 31987  + 31989 + 1991 )

A = 3 . (1 + 3 + 32 ) + 37 . ( 1 + 3 + 32 ) + ... + 31987 . ( 1 + 3 + 32 )

A = 3 . 13 + 37 . 13 + ... + 31987. 13

A = 13 . ( 3 + 37 + ... + 31987 )   ( VÌ 13 CHIA HẾT CHO 13 )

=> A CHIA HẾT CHO 13

2 tháng 11 2018

\(C=3+3^3+3^5+.....+3^{1991}.\)

\(=\left(3+3^3+3^5+3^7\right)+\left(3^9+3^{11}+3^{13}+3^{15}\right)+.....+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3.\left(1+3^2+3^4+3^6\right)+3^9\left(1+3^2+3^4+3^6\right)+....+3^{1985}\left(1+3^2+3^4+3^6\right)\)

\(=3.820+3^9.820+....+3^{1985}.820\)

\(=820\left(3+3^9+....+3^{1985}\right)\)

\(=41.20\left(3+3^9+...+3^{1985}\right)\)

\(\Rightarrow C⋮41\)

4 tháng 9 2020

a) 

\(x^2+x+1\)   

\(=x\left(x+1\right)+1\) 

Vì \(x\left(x+1\right)\) là tích của 2 số nguyên liến tiếp nên tích của chúng là số chẵn 

\(\Rightarrow x\left(x+1\right)+1\) là số lẻ 

\(\left(x^2+x+1\right)\) không chia hết cho 2 

b, 

Ta có : 

\(3\left(x^2+2x\right)⋮3\forall x\) 

1 không chia hết cho 3 

\(\Rightarrow\left[3\left(x^2+2x\right)+1\right]\)  không chia hết cho 3 

c, 

\(\left(3x^2+6x+1\right)\) 

\(=3\left(x^2+2x\right)+1\) 

Ta có : 

\(3\left(x^2+2x\right)⋮3\forall x\)  

1 không chia hết cho 3 

Vậy \(\left(3x^2+6x+1\right)\)  không chia hết cho 3 

4 tháng 9 2020

Cảm ơn bn nhìu nhé!

16 tháng 10 2021

\(B=3+3^2+3^3+....+3^{120}\)

a, Ta thấy : Cách số hạng của B đều chi hết cho 3 

\(B=3+3^2+3^3+....+3^{120}⋮3\)

\(b,B=3+3^2+3^3+....+3^{120}\)

\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{119}+3^{120}\right)\)

\(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)

\(B=3.4+3^3.4+...+3^{119}.4\)

\(B=4\left(3+3^3+...+3^{199}\right)\)

Có : \(B=4\left(3+3^3+...+3^{199}\right)⋮4\)

\(\Rightarrow B⋮4\)

\(c,B=3+3^2+3^3+....+3^{120}\)

\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)

\(B=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{118}\left(3+3^2\right)\)

\(B=13+3^2.13+...+3^{118}.13\)

\(B=13\left(3^2+3^4+...+3^{118}\right)\)

Có : \(B=13\left(3^2+3^4+...+3^{118}\right)⋮13\)

\(\Rightarrow B⋮13\)

28 tháng 11 2024

lạnh quá đừng ra đề nx

 

3 tháng 1 2016

thu vien cua trường có khoảng trên 2000 bản sach. nếu xếp 100 bản vào một tủ thì thừa 12 bản, nếu xếp 120 bản vào tủ thì thiếu 108 bản. nếu xếp 150 bản vào một tủ thì thiếu 138 bản. hỏi thu viện có bao nhiêu bản sách?  ai giải hộ với

 

3 tháng 1 2016

đưa lên câu hỏi người ta làm gì zay

10 tháng 8 2020

Bạn vào câu hỏi tương tự là có nha !

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

10 tháng 8 2020

Ko cs đầy đủ bn ơi!

13 tháng 10 2018

a) \(1+2+...+2^{2011}\)

\(=2^0+2+...+2^{2010}+2^{2011}\)

\(=2^0\left(1+2\right)+...+2^{2010}\left(1+2\right)\)

\(=2^0\cdot3+...+2^{2010}\cdot3\)

\(=3\left(2^0+...+2^{2010}\right)⋮3\left(đpcm\right)\)

Các câu còn lại tương tự, dài quá

13 tháng 10 2018

a) Dãy trên có : 2012 lũy thừa và 2012 \(⋮\)2 =< có thể ghpes thành các nhóm, mỗi nhóm 2 lũy thừa.

 Ta có : 

  A  = ( 1 + 2 ) + ( 22 + 23 ) + ...+( 22010 +  22011 )

=> A = 3 + 22 . ( 1 + 2 ) +...+ 22010. ( 1 + 2 )

=> A = 3 . ( 1 + 22 +...+ 22010 ) => A chia hết cho 3

-  Để chứng minh chia hết cho 5 thì ghép 4 cái liền. ( làm tương tự trên )

b, 

Ta có : 

 B = 1 + 7 +...+ 7101

=> B = ( 1 + 72 ) + ( 7 + 73 ) +...+ ( 799 + 7101 )

=> B = 50 + 72.( 1 + 72 ) +...+ 799. ( 1 + 72 )

=> B = 50 + 72.50 +...+799.50

=> B = 50.( 1 + 7+...+ 799 ) => B chia hết cho 50

Dưới tương tự...

A=(2^1+2^2+2^3+2^4+2^5+2^6)+................+(2^2005+2^2006+2^2007+2^2008+2^2009+2^2010)

A=2^1(1+2+2^2+2^3+2^4+2^5)+...................+2^2005(1+2+2^2+2^3+2^4+2^5)

A=2.63+......................+2^2005.63

A=63.(2+..............................+2^2005)

VÌ 63 CHIA HẾT CHO 3 VÀ 7 VẬY A CHIA HẾT CHO 3 VÀ 7.

chúc cậu học tốt!