Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)..............\left(1-\frac{1}{780}\right)\)
\(A=\frac{2}{3}.\frac{5}{6}.......\frac{779}{780}\)
\(A=\frac{4}{6}.\frac{10}{12}........\frac{1558}{1560}\)
\(A=\frac{1.4.2.5...........38.41}{2.3.3.4..........39.40}\)
\(A=\frac{\left(1.2.......38\right).\left(4.5..........41\right)}{\left(2.3.......39\right).\left(3.4............40\right)}\)
\(A=\frac{41}{39}\)
\(A=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right).......\left(1-\frac{1}{780}\right)\)
\(=\left(\frac{3}{3}-\frac{1}{3}\right)\left(\frac{6}{6}-\frac{1}{6}\right)..........\left(\frac{780}{780}-\frac{1}{780}\right)\)
\(=\frac{2}{3}.\frac{5}{6}..............\frac{779}{780}\)
sao nữa??
\(B=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)......\left(1-\frac{1}{780}\right)\)
\(B=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}......\frac{779}{780}\)\(=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}.....\frac{1558}{1560}\)
\(B=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.....\frac{38.41}{39.40}\)
\(B=\frac{\left(1.2.3.....38\right)\left(4.5.6.....41\right)}{\left(2.3.4.....39\right)\left(3.4.5.....40\right)}=\frac{1.41}{39.3}=\frac{41}{117}\)
\(B=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)......\left(1-\frac{1}{780}\right)\)
\(\Rightarrow B=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}......\frac{779}{780}=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}.....\frac{1558}{1560}\)
\(\Rightarrow B=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.....\frac{38.41}{39.40}\)
\(\Rightarrow B=\frac{\left(1.2.3.....38\right)\left(4.5.6.....41\right)}{\left(2.3.4.....39\right)\left(3.4.5.....40\right)}=\frac{1.41}{39.3}=\frac{41}{117}\)
\(\left(x+2\right)^5=2^{10}\)
\(\left(x+2\right)^5=\left(2^2\right)^5\)
\(\left(x+2\right)^5=4^5\)
\(\Rightarrow x+2=4\)
\(\Rightarrow x=4-2\)
\(\Rightarrow x=2\)
\(1+2+3+...+x=78\)
Ta có :
\(\frac{x\cdot\left(x+1\right)}{2}=78\)
\(x\cdot\left(x+1\right)=78\cdot2\)
\(x\cdot\left(x+1\right)=156\)
Vì \(x\cdot\left(x+1\right)\)là tích của 2 số tự nhiên liên tiếp
\(\Rightarrow12\cdot13=156\)
\(\Rightarrow x=12\)
\(\left(x+1\right)^2=\left(x+1\right)^0\)
\(\left(x+1\right)^2=1\)
\(\left(x+1\right)^2=1^2\)
\(\Rightarrow x+1=1\)
\(\Rightarrow x=1-1\)
\(\Rightarrow x=0\)
\(\left(2+x\right)+\left(4+x\right)+\left(6+x\right)+...+\left(52+x\right)=780\)
\(\left(x+x+x+...+x\right)+\left(2+4+6+...+52\right)=780\)
\(26x+\frac{\left(52+2\right)\cdot26}{2}=780\)
\(26x+702=780\)
\(26x=780-702\)
\(26x=78\)
\(x=78:26\)
\(x=3\)
Vậy \(x=3\)
Chúc bạn học tốt !!!
Xét mẫu có số số hạng là : (27 - 3) : 3 + 1 = 9 (số hạng)
Ta có :
\(\frac{\frac{5,4}{0,4}.1420+4,5.780.3}{3+6+9+...+27}=\frac{13,5.1420+45.78.3}{\frac{\left(27+3\right).9}{2}}=\frac{19170+10530}{135}=\frac{29700}{135}=220\)
\(B=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}...\frac{779}{780}\)
\(B=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}...\frac{1558}{1560}\)
\(B=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{38.41}{39.40}\)
\(B=\frac{1.2.3...38}{3.4.5...40}.\frac{4.5.6...41}{2.3.4...39}\)
\(B=\frac{2}{39.40}.\frac{40.41}{2.3}\)
\(B=\frac{41}{39.3}=\frac{41}{297}\)
(2\(\hept{\begin{cases}2\\3\end{cases}}^5\))