K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2019

\(B=2019-\frac{2019}{3}-\frac{2019}{6}-\frac{2019}{10}-...-\frac{2019}{45}\)

\(\Leftrightarrow B=2019\left(1-\frac{1}{3}-\frac{1}{6}-\frac{1}{10}-...-\frac{1}{45}\right)\)

\(\Leftrightarrow B=2019\left[1-\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}\right)\right]\)

\(\Leftrightarrow B=2019\left[1-\left(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{9.10}\right)\right]\)

\(\Leftrightarrow B=2019\left[1-2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\right]\)

\(\Leftrightarrow B=2019\left[1-2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\right]\)

\(\Leftrightarrow B=2019\left[1-2\left(\frac{1}{2}-\frac{1}{10}\right)\right]\)

\(\Leftrightarrow B=2019\left[1-2.\frac{4}{10}\right]\)

\(\Leftrightarrow B=2019\left[1-\frac{4}{5}\right]\)

\(\Leftrightarrow B=2019.\frac{1}{5}\)

\(\Leftrightarrow B=\frac{2019}{5}\)

8 tháng 2 2020

Tham khảo

https://hoc24.vn/hoi-dap/question/814814.html

8 tháng 2 2020

B=11.2+13.4+15.6+....+12019.2020

⇒2B=21.2+23.4+25.6+....+22019.2020

<1+12.3+13.4+14.5+15.6+....+12018.2019+12019.2020

2B<1+3−22.3+4−33.4+5−44.5+....+2019−20182018.2019+2020−20192019.2020

2B<1+12−13+13−14+...+12019−12020

2B<1+12−12020<1+12

B<34

---------------------

Đặt 22018=a;32019=b;52020=c(a,b,c>0)

A=aa+b+bb+c+cc+a>aa+b+c+ba+b+c+ca+b+c=1

⇒A>1>34>B

27 tháng 6 2019

Ta tính hiệu của M và T

ta có 

Hiệu của Mẫu và Tử của A là   2019^2019-1 - (2019^2018-1) = 2019^2019 - 2019^2018 = 2019^2019.2018

Hiệu của Mẫu và Tử của B là   2019^2019+1 - (2019^2018+1) = 2019^2019 - 2019^2018 = 2019^2019.2018

2 Hiệu trên bằng nhau nên A < B  

28 tháng 3 2020

\(\hept{\begin{cases}A=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}^{ }\\B=-\frac{1}{2020}-\frac{7}{2019^2}-\frac{5}{2019^3}-\frac{3}{2019^4}\end{cases}}\)

=>\(A-B=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}+\frac{1}{2020}+\frac{7}{2019^2}+\frac{5}{2019^3}+\frac{3}{2019^4}\)

\(=>A-B=\left(-\frac{3}{2019^2}+\frac{7}{2019^2}\right)+\left(-\frac{7}{2019^4}+\frac{3}{2019^4}\right)\)

=>\(A-B=\frac{4}{2019^2}+-\frac{4}{2019^4}\)

=>\(A-B=\frac{2019^2.4}{2019^4}-\frac{4}{2019^4}\)

=>\(A>B\)

cách này mình tự nghĩ 

28 tháng 3 2020

thank you \(v\text{er}y^{1000000000000}\)much

1 tháng 8 2019

#)Giải :

Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^{2019}}{c^{2019}}=\frac{b^{2019}}{d^{2019}}=\frac{a^{2019}+b^{2019}}{c^{2019}+d^{2019}}\left(1\right)\)

Lại có : \(\frac{a^{2019}}{c^{2019}}=\frac{b^{2019}}{d^{2019}}=\left(\frac{a}{c}\right)^{2019}=\left(\frac{b}{d}\right)^{2019}=\left(\frac{a+b}{c+d}\right)^{2019}=\frac{\left(a+b\right)^{2019}}{\left(c+d\right)^{2019}}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{\left(a+b\right)^{2019}}{\left(c+d\right)^{2019}}=\frac{a^{2019}+b^{2019}}{c^{2019}+d^{2019}}\left(đpcm\right)\)