Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi A' và B' lần lượt là ảnh của A và B qua phép tịnh tiến \(\overrightarrow{u}\)
\(\Rightarrow A';B'\) đều thuộc d2
Theo công thức tọa độ ta có \(\left\{{}\begin{matrix}A'\left(-4;3\right)\\B'\left(0;5\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{A'B'}=\left(4;2\right)=2\left(2;1\right)\)
\(\Rightarrow\) Đường thẳng d2 nhận \(\left(1;-2\right)\) là 1 vppt
Phương trình d2:
\(1\left(x-0\right)-2\left(y-5\right)=0\Leftrightarrow x-2y+10=0\)
c) Đường thẳng d có vecto pháp tuyến là n→(1;-2) nên 1 vecto chỉ phương của d là(2; 1)
=> Vecto v→ không cùng phương với vecto chỉ phương của đường thẳng d
=> Qua phép tịnh tiến v→ biến đường thẳng d thành đường thẳng d’ song song với d.
Nên đường thẳng d’ có dạng : x- 2y + m= 0
Lại có B(-1; 1) d nên B’(-2;3) d’
Thay tọa độ điểm B’ vào phương trình d’ ta được:
-2 -2.3 +m =0 ⇔ m= 8
Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0
Gọi M N, lần lượt là ảnh của các điểm A(3;5), B(-1;1) qua phép tịnh tiến theo véc-tơ v=(-1;2) . Tính độ dài MN.
Giải
Phép tịnh tiến theo vecto v biến điểm A thành điểm M là:
\(\left\{{}\begin{matrix}x_M=x_A+x_v=3-1=2\\y_M=y_A+y_v=5+2=7\end{matrix}\right.\)
=> M (2,7).
Phép tịnh tiến theo vecto v biến điểm B thành điểm N là:
\(\left\{{}\begin{matrix}x_N=x_B+x_v=-1-1=-2\\y_N=y_B+y_v=1+2=3\end{matrix}\right.\)
=> N (-2,3).
Độ dài vecto MN bằng: \(\sqrt{\left(x_N-x_M\right)^2+\left(y_N-y_M\right)^2}=\)\(4\sqrt{2}\)
a) Giả sử A'=(x'; y'). Khi đó \(T_{\overrightarrow{v}}\left(A\right)=A'\Leftrightarrow\left\{{}\begin{matrix}x'=3-1=2\\y'=5+2=7\end{matrix}\right.\)
Do đó: A' = (2;7)
Tương tự B' =(-2;3)
b) Ta có: \(A=T_{\overrightarrow{v}}\left(C\right)\Leftrightarrow C=^T\overrightarrow{-v}\left(A\right)=\left(4;3\right)\)
c) Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến
Gọi M(x;y), M' = \(^T\overrightarrow{v}\) =(x'; y'). Khi đó x' = x-1, y' = y + 2 hay x = x' +1, y= y' - 2. Ta có M ∈ d ⇔ x-2y +3 = 0 ⇔ (x'+1) - 2(y'-2)+3=0 ⇔ x' -2y' +8=0 ⇔ M' ∈ d' có phương trình x-2y+8=0. Vậy \(^T\overrightarrow{v}\) (d) = d'.
Cách 2. Dùng tính chất của phép tịnh tiến
Gọi \(^T\overrightarrow{v}\)(d) =d'. Khi đó d' song song hoặc trùng với d nên phương trình của nó có dạng x-2y+C=0. Lấy một điểm thuộc d chẳng hạn B(-1;1), khi đó \(^T\overrightarrow{v}\) (B) = (-2;3) thuộc d' nên -2 -2.3 +C =0. Từ đó suy ra C = 8.
a) Giả sử A'=(x'; y'). Khi đó
(A) = A' ⇔
Do đó: A' = (2;7)
Tương tự B' =(-2;3)
b) Ta có A = (C) ⇔ C= (A) = (4;3)
c)Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến
Gọi M(x;y), M' = =(x'; y'). Khi đó x' = x-1, y' = y + 2 hay x = x' +1, y= y' - 2. Ta có M ∈ d ⇔ x-2y +3 = 0 ⇔ (x'+1) - 2(y'-2)+3=0 ⇔ x' -2y' +8=0 ⇔ M' ∈ d' có phương trình x-2y+8=0. Vậy (d) = d'
Cách 2. Dùng tính chất của phép tịnh tiến
Gọi (d) =d'. Khi đó d' song song hoặc trùng với d nên phương trình của nó có dạng x-2y+C=0. Lấy một điểm thuộc d chẳng hạn B(-1;1), khi đó (B) = (-2;3) thuộc d' nên -2 -2.3 +C =0. Từ đó suy ra C = 8
1.
Theo công thức tạo độ phép tịnh tiến:
\(\left\{{}\begin{matrix}x_{A'}=x_A+3=5\\y_{A'}=y_A+1=4\end{matrix}\right.\) \(\Rightarrow A'\left(5;4\right)\)
\(\left\{{}\begin{matrix}x_{B'}=x_B+3=4\\y_{B'}=y_B+1=2\end{matrix}\right.\) \(\Rightarrow B'\left(4;2\right)\)
\(\Rightarrow\overrightarrow{A'B'}=\left(-1;-2\right)\Rightarrow A'B'=\sqrt{\left(-1\right)^2+\left(-2\right)^2}=\sqrt{5}\)
2.
Gọi A' và B' lần lượt là ảnh của A và B qua phép tịnh tiến \(\overrightarrow{u}\Rightarrow\) đường thẳng A'B' chính là đường thẳng (d2)
\(\left\{{}\begin{matrix}x_{A'}=x_A+0=-4\\y_{A'}=y_A+3=3\end{matrix}\right.\) \(\Rightarrow A'\left(-4;3\right)\)
\(\left\{{}\begin{matrix}x_{B'}=x_B+0=0\\y_{B'}=y_B+3=5\end{matrix}\right.\) \(\Rightarrow B'\left(0;5\right)\)
\(\Rightarrow\overrightarrow{A'B'}=\left(4;2\right)=2\left(2;1\right)\Rightarrow\) đường thẳng (d2) nhận \(\left(1;-2\right)\) là 1 vtpt
Phương trình d2:
\(1\left(x-0\right)-2\left(y-5\right)=0\Leftrightarrow x-2y+10=0\)
tên bạn hay lắm like+ theo dõi cho bạn nè