Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀI 1:
\(A=\left(x-10\right)^2+103\)
Có: \(\left(x-10\right)^2\ge0\forall x\)
=> \(A\ge103\)
DẤU "=" XẢY RA <=> \(\left(x-10\right)^2=0\Rightarrow x=10\)
\(B=\left(2x+1\right)^2-6\)
Có: \(\left(2x+1\right)^2\ge0\forall x\)
=> \(B\ge-6\)
DẤU "=" XẢY RA <=> \(\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)
BÀI 3:
a) \(A=y^4+y^3-y^2-2y-\left(y^4+y^3+y^2-2y^2-2y-2\right)\)
\(A=y^4+y^3-y^2-2y-y^4-y^3+y^2+2y+2\)
\(A=2\)
b) \(B=\left(2x\right)^3+3^3-8x^3+2\)
\(B=29\)
Bài 1.
A = x2 - 20x + 103
A = ( x2 - 20x + 100 ) + 3
A = ( x - 10 )2 + 3 ≥ 3 ∀ x
Đẳng thức xảy ra <=> x - 10 = 0 => x = 10
=> MinA = 3 <=> x = 10
B = 4x2 + 4x - 5
B = ( 4x2 + 4x + 1 ) - 6
B = ( 2x + 1 )2 - 6 ≥ -6 ∀ x
Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2
=> MinB = -6 <=> x = -1/2
Bài 2.
A = -x2 + 8x - 21
A = -x2 + 8x - 16 - 5
A = -( x2 - 8x + 16 ) - 5
A = -( x - 4 )2 - 5 ≤ -5 ∀ x
Đẳng thức xảy ra <=> x - 4 = 0 => x = 4
=> MaxA = -5 <=> x = 4
B = lỗi đề :>
Bài 3.
a) y( y3 + y2 - y - 2 ) - ( y2 - 2 )( y2 + y + 1 )
= y4 + y3 - y2 - 2y - ( y4 + y3 + y2 - 2y2 - 2y - 2 )
= y4 + y3 - y2 - 2y - y4 - y3 - y2 + 2y2 + 2y + 2
= 2 ( đpcm )
b) ( 2x + 3 )( 4x2 - 6x + 9 ) - 2( 4x3 - 1 )
= ( 2x )3 + 27 - 8x3 + 2
= 8x3 + 27 - 8x3 + 2
= 29 ( đpcm )
a) \(x^2+6x-3\)
\(=x^2+6x+9-12\)
\(=\left(x+3\right)^2-12\ge-12\)
Vậy GTNN của bt là -12\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
a. \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
vì \(\left(x-1\right)^2\ge0\) với mọi x
=> (x-1)^2 +4 \(\ge\) vợi mọi x
Pmin=4 <=> x-1=0 <=>x=1
1.
b)\(M=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu = xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\) và \(y+3=0\)
\(\Leftrightarrow x=\frac{1}{2}\) và \(y=-3\)
Vậy GTNN của M là \(\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)và \(y=-3\)
\(1,a,A=x^2-6x+25\)
\(=x^2-2.x.3+9-9+25\)
\(=\left(x-3\right)^2+16\)
Ta có :
\(\left(x-3\right)^2\ge0\)Với mọi x
\(\Rightarrow\left(x-3\right)^2+16\ge16\)
Hay \(A\ge16\)
\(\Rightarrow A_{min}=16\)
\(\Leftrightarrow x=3\)
Bài 3:
a) A = 9x2 + 42x + 49
= (3x + 7)2 (1)
Thay x = 1 vào (1)
Ta có: (3.1 + 7)2
= 102
= 100
Bài 1:
a) C = 4x2 - 4x
= [(2x)2 - 2.2x.1 + 1] - 1
= (2x - 1)2 - 1
Ta có: (2x - 1)2 ≥ 0 với ∀x
Nên: (2x - 1)2 - 1 ≥ -1 với ∀x
Dấu "=" xảy ra ⇔ (2x - 1)2 = 0
2x - 1 = 0
2x = 1
x = \(\frac{1}{2}\)
Vậy GTNN của biểu thức C là -1 khi x = \(\frac{1}{2}\)
Bài 2:
b) B = (x + 4)(2 - x)
= 2x - x2 + 8 - 4x
= -x2 - 2x + 8
= -(x2 + 2x + 1 - 1) + 8
= -(x + 1)2 + 9
Ta có: -(x + 1)2 ≤ 0 với ∀x
Nên: -(x + 1)2 + 9 ≤ 9 với ∀x
Dấu "=" xảy ra ⇔ -(x + 1)2 = 0
x + 1 = 0
x = -1
Vậy GTLN của biểu thức B là 9 khi x = -1
Bạn ơi bài 2a có đúng đề bài không vậy bạn?
1/ \(A=4x^2-12x+15=\left(2x\right)^2-2.3.2x+3^2+6=\left(2x-3\right)^2+6\ge6\)
Đẳng thức xảy ra khi: \(2x-3=0\Rightarrow2x=3\Rightarrow x=3:2\Rightarrow x=1,5\)
Vậy giá trị nhỏ nhất của A là 6 khi x = 1,5
2a/ \(B=-x^2+4x+4=-\left(x^2-4x-4\right)=-\left(x^2-2.2x+2^2-8\right)=-\left[\left(x-2\right)^2-8\right]\)
\(\Rightarrow B=-\left(x-2\right)^2+8\le8\)
Đẳng thức xảy ra khi: \(x-2=0\Rightarrow x=2\)
Vậy giá trị lớn nhất của B là 8 khi x = 2
2b/ \(C=4-16x^2-8x=-16x^2-8x+4=-\left(16x^2+8x-4\right)=-\left[\left(4x\right)^2+2.4x+1-5\right]\)
\(\Rightarrow C=-\left[\left(4x+1\right)^2-5\right]=-\left(4x+1\right)^2+5\le5\)
Đẳng thức xảy ra khi: 4x + 1 = 0 => x = -0,25
Vậy giá trị lớn nhất của C là 5 khi x = -0,25
Thanks bạn!
Thanks bạn!