Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1.5}+\frac{1}{2.5}+\frac{1}{4.5}+...+\frac{1}{256.5}\)
\(A=\frac{1}{5}\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)\)
\(5A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)
\(\frac{5}{2}A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\)
\(\Rightarrow5A-\frac{5}{2}A=1-\frac{1}{2^9}\)
\(\Rightarrow\frac{5}{2}A=1-\frac{1}{2^9}\)
\(\Rightarrow A=\frac{2}{5}\left(1-\frac{1}{2^9}\right)=\frac{2}{5}-\frac{1}{5.2^8}\)
\(\text{ta có: }\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
\(\frac{1}{4.5}=\frac{1}{4}-\frac{1}{5}\)
...........................
\(\frac{1}{39.40}=\frac{1}{39}-\frac{1}{40}\)
Đồng nhất 2 vế ta có:
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{39}-\frac{1}{40}=\frac{1}{2}-\frac{1}{40}=\frac{19}{40}\)
Ta có :
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{39.40}\)
\(=\)\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{39}-\frac{1}{40}\)
\(=\)\(\frac{1}{2}-\frac{1}{40}\)
\(=\)\(\frac{20}{40}-\frac{1}{40}\)
\(=\)\(\frac{19}{40}\)
Vậy \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{39.40}=\frac{19}{40}\)
\(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{1280}\)
\(=\frac{1}{5}\left(1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)\)
\(=\frac{\frac{1}{5}\left(1-\frac{1}{2^9}\right)}{\left(1-\frac{1}{2}\right)}\)
\(=\frac{2}{5}\left(1-\frac{1}{2^9}\right)\)
C = \(\frac{1}{5}\)+\(\frac{1}{10}\)+\(\frac{1}{20}\)+\(\frac{1}{40}\)+\(\frac{1}{80}\)+........+\(\frac{1}{1280}\)
2C = 2 . ( \(\frac{1}{5}\)+\(\frac{1}{10}\)+.......+\(\frac{1}{1280}\))
2C = \(\frac{2}{5}\)+\(\frac{1}{5}\)+\(\frac{1}{10}\)+.....+\(\frac{1}{1280}\)
2C-C = ( \(\frac{2}{5}\)+\(\frac{1}{5}\)+\(\frac{1}{10}\)+......+\(\frac{1}{1280}\)) - (\(\frac{1}{5}\)+\(\frac{1}{10}\)+.....+\(\frac{1}{1280}\))
C . ( 2-1) = \(\frac{2}{5}\)
C = \(\frac{2}{5}\)
Vậy C = \(\frac{2}{5}\)
\(C=\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+\frac{1}{80}+........+\frac{1}{1280}\)
\(\Rightarrow2C=2\left(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+\frac{1}{80}+...........+\frac{1}{1280}\right)\)
\(\Rightarrow2C=\frac{2}{5}+\frac{1}{5}+\frac{1}{10}+.............+\frac{1}{1280}\)
\(\Rightarrow2C-C=\left(\frac{2}{5}+\frac{1}{5}+\frac{1}{10}+............+\frac{1}{1280}\right)-\left(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+\frac{1}{80}+...........+\frac{1}{1280}\right)\)
\(\Rightarrow C=\frac{2}{5}-\frac{1}{1280}\)
\(\Rightarrow C=\frac{512}{1280}-\frac{1}{1280}\)
\(\Rightarrow C=\frac{511}{1280}\)
Vậy C = \(\frac{511}{1280}\)
(x-15)+(x-14)+(x-13)+....+(x-1)+19+20=0
(x-15)+(x-14)+(x-13)+....+(x-1)+19 = 0 - 20
(x-15)+(x-14)+(x-13)+....+(x-1)+19 = -20
(x-15)+(x-14)+(x-13)+....+(x-1) = (-20) - 19
(x-15)+(x-14)+(x-13)+....+(x-1) = -39
<=> có 15 cặp như vậy
=> (x+x+x+...+x) - (15+14+13+...+1) = -39
=> 15x - 120 = -39
15x = (-39) + 120
15x = 81
x = 81 : 15
x = 5,4
a) 3a - 6 - 2 . (-1) = 2
3a - 8 = 2
3a = 10
a = 10/3
b) 12 - a + (-7) +5 . 5 = -1
12 - a +18 = -1
12 - a = -19
a = 12 - (-19)
a = 31
c) 1 - 2 . (-3) + (-7) - 3a = -9
0 - 3a = -9
-3a = -9
a = 3
a, Thay b = 6 ; c = -1 vào 3a - b - 2c = 2
Ta có 3a - 6 - 2 x ( - 1 ) = 2
3a - 6 + 2 = 2
3a = 2 + 6 - 2
3a = 6
a = 2
b, Thay b = - 7 ; c = 5 vào 12 - a + b + 5c = -1
Ta có : 12 - a + ( - 7 ) + 5 x 5 = - 1
12 - a - 7 + 25 = -1
30 - a = -1
a = 30 + 1
a = 31
c, Thay b = -3 ;c = -7 vào 1 - 2b + c - 3a = - 9
Ta có : 1 - 2 x ( -3 ) + ( -7 ) - 3a = -9
1 + 6 -7 - 3a = -9
-3a = -9
a = 3
Tham khảo ở phần Câu hỏi tương tự bạn nhé :
Câu hỏi của Trịnh Thúy An - Toán lớp 5 - Học toán với OnlineMath
\(B=\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{1280}\)
\(B=1\cdot\frac{1}{5}+\frac{1}{2}\cdot\frac{1}{5}+\frac{1}{4}\cdot\frac{1}{5}+\frac{1}{8}\cdot\frac{1}{5}+...+\frac{1}{256}\cdot\frac{1}{5}\)
\(B=\frac{1}{5}\cdot\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\right)\)
Đặt \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}\)
\(\Rightarrow2A-A=2-\frac{1}{256}\)
\(A=2-\frac{1}{256}\)
Thay A vào B
có: \(B=\frac{1}{5}.\left(2-\frac{1}{256}\right)=\frac{1}{5}\cdot\frac{511}{256}=\frac{511}{1280}\)