Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)4(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
<=>72 - 20x - 36x +84 = 30x - 240 - 6x 84
<=> -80x = -480
<=> x = 6
b) 5(3x+5)-4(2x-3) =5x+3(2x+12)+1
<=> 15x + 25 - 8x + 12 = 5x + 6x + 36 + 1
<=> 15x + 25 - 8x + 12 - 5x - 6x - 36 - 1 = 0
<=> -4x = 0
<=> x = 0
c) 2(5x-8)-3(4x-5)=4(3x-4)+11
= 10x - 16 - 12x + 15 = 12x - 16 + 11
= -14x = -4
= x =\(\frac{2}{7}\)
d) 5x-3{4x-2[4x-3(5x-2)]}=182
= 5x - 3 . [4x - 2(4x - 15x + 6)]
= 5x - 3 . (4x - 8x + 30x - 12)
= 5x - 12x + 24x - 90x + 36
= -73x + 36 = 182
=> -73x = 182 - 36 = 146
=> x = 146 : (-73) = -2
~Hok tốt~
a) 4(x+2) - 7(2x - 1) + 9(3x - 4)=30
⇔4x+8 - 14x + 7 + 27x - 36 = 30
⇔ 17x = 51
⇔ x = 3
b) 2(5x - 8) - 3(4x - 5) = 4(3x - 4) + 11
⇔ 10x - 16 - 12x + 15 = 12x - 16 + 11
⇔ -14x = -4
⇔ x= \(\frac{2}{7}\)
c) 5x(1 - 2x) - 3x(x + 18) = 0
⇔ 5x - 10x\(^2\) - 3x\(^2\) -54x =0
⇔ -13x\(^2\) -49 x = 0
⇔ -x ( 13x + 49 ) =0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\13x+49=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{-49}{13}\end{matrix}\right.\)
d) 5x - 3{4x - 2[4x - 3(5x - 2)]} = 182
⇔ 5x - 3[ 4x - 2( 4x - 15x + 6 ) ]= 182
⇔5x - 3 ( 4x - 8x + 30x - 12 ) = 182
⇔ 5x - 3 ( 26x - 12 ) = 182
⇔ 5x - 78x + 36 = 182
⇔ - 73x = 146
⇔ x = -2
Bài 1.
a) -2x( -3x + 2 ) - ( x + 2 )2
= 6x2 - 4x - ( x2 + 4x + 4 )
= 6x2 - 4x - x2 - 4x - 4
= 5x2 - 8x - 4
b) ( x + 2 )( x2 - 2x + 4 ) - 2( x + 1 )( 1 - x )
= x3 + 8 + 2( x + 1 )( x - 1 )
= x3 + 8 + 2( x2 - 1 )
= x3 + 8 + 2x2 - 2
= x3 + 2x2 + 6
c) ( 2x - 1 )2 - 2( 4x2 - 1 ) + ( 2x + 1 )2
= 4x2 - 4x + 1 - 8x2 + 2 + 4x2 + 4x + 1
= 4
d) x2 - 3x + xy - 3y
= x( x - 3 ) + y( x - 3 )
= ( x - 3 )( x + y )
Bài 2.
a) 4x2 - 4xy + y2 = ( 2x - y )2
b) 9x3 - 9x2y - 4x + 4y
= 9x2( x - y ) - 4( x - y )
= ( x - y )( 9x2 - 4 )
= ( x - y )( 3x - 2 )( 3x + 2 )
c) x3 + 2 + 3( x3 - 2 )
= x3 + 2 + 3x3 - 6
= 4x3 - 4
= 4( x3 - 1 )
= 4( x - 1 )( x2 + x + 1 )
Bài 3.
2( x - 2 ) = x2 - 4x + 4
⇔ ( x - 2 )2 - 2( x - 2 ) = 0
⇔ ( x - 2 )( x - 2 - 2 ) = 0
⇔ ( x - 2 )( x - 4 ) = 0
⇔ x = 2 hoặc x = 4
Câu 1:
\(2x^3-3x^2+x+a\)
\(=2\left(x^3-6x^2+12x-8\right)+9\left(x^2-4x+4\right)+13\left(x-2\right)+\left(6+a\right)\)
\(=2\left(x-2\right)^3+9\left(x-2\right)^2+13\left(x-2\right)+\left(6+a\right)\)chia hết cho \(x-2\)khi và chỉ khi :
\(6+a=0\Leftrightarrow a=-6\). Vậy \(a=-6\).
Câu 2:
\(\left(x+1\right)\left(2x-x\right)-\left(3x+5\right)\left(x+2\right)=4x^2+1\)
\(\Leftrightarrow x^2+x-\left(3x^2+11x+10\right)=-4x^2+1\)
\(\Leftrightarrow x^2+x-3x^2-11x-10+4x^2-1=0\)
\(\Leftrightarrow2x^2-10x-11=0\)
\(\Delta'=\left(-5\right)^2-2\left(-11\right)=47>0\)
\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt:
\(x=\frac{5+\sqrt{47}}{2}\)hoặc \(x=\frac{5-\sqrt{47}}{2}\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{5+\sqrt{47}}{2};\frac{5-\sqrt{47}}{2}\right\}\)
a: Ta có: \(\left(3x-1\right)^2-\left(3x+4\right)\left(3x-4\right)=32\)
\(\Leftrightarrow9x^2-6x+1-9x^2+16=32\)
\(\Leftrightarrow-6x=15\)
hay \(x=-\dfrac{5}{2}\)
b: Ta có: \(\left(4x+3\right)^2-\left(4x-1\right)\left(4x+1\right)=-14\)
\(\Leftrightarrow16x^2+24x+9-16x^2+1=-14\)
\(\Leftrightarrow24x=-24\)
hay x=-1