Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+3+3^2+3^3+3^4+...+3^100
3A=3+3^2+3^3+3^4+...+3^101
3A-A=(3+3^2+3^3+3^4+...+3^101)-(1+3+3^2+3^3+3^4+...+3^100)
2A=3^101-1
A=(3^101-1):2
phần b làm tương tự phần a nhưng mà là nhân cả biểu thức B với 4 nhé
Mình ngu lắm dân trần đăng ninh chuyên anh mà làm sao giỏi toán được
Bằng một cách thần kì, ta tính được A = \(\dfrac{3^{^{12}}-1}{2}\)
Ta sẽ chứng minh 312 - 1 ⋮ 10, như vậy thì (312 - 1) : 2 là một số nguyên chia hết cho 5
Thật vậy:
Ta có 32 = 9 \(\equiv\) -1 (mod 10)
=> (32)6 \(\equiv\) (-1)6 (mod 10)
=> 312 \(\equiv\) 1 (mod 10)
=> 312 - 1 \(\equiv\) 0 (mod 10)
Hay 312 - 1 chia hết cho 10
Vậy bài toán đã được chứng minh
A=3+32+33+....+320
3A=3.(3+32+33+....+320)
3A=32+33+34+...+321
3A-A=(32+33+34+...+321)-(3+32+33+....+320)
2A=321-3
A=\(\frac{3^{21}-3}{2}\)
Chúc bn học tốt
S=3+32+33+....+360
2S=32+33+...+361
2S-S=(32+33+...+361-3+32+33+...+360)
S=361-3
mk không chắc đâu nhé.
S=3+32+33+34+....+360
2.S=3+33+34+35+....+361
2.S-S=361-3
vậy S=3mũ 61-1
câu hỏi này mk làm lâu rùi nên hông nhớ rõ.Nếu sai đừng trách nhé
\(B=1+2+3^2+\cdot\cdot\cdot+3^{51}\)
\(\Rightarrow B=3+3^2+3^3+\cdot\cdot\cdot+3^{51}\)
\(\Rightarrow3B=3^2+3^3+\cdot\cdot\cdot+3^{52}\)
\(\Rightarrow3B-B=\left(3^2+\cdot\cdot\cdot+3^{52}\right)-\left(3+\cdot\cdot\cdot+3^{51}\right)\)
\(\Rightarrow2B=3^{52}-3\)
\(\Rightarrow B=\frac{3^{52}-3}{2}\)
\(1+2+3^2+3^3+...+3^{50}+3^{51}\)
Đặt tổng trên là A ta có :
\(A=3+3^2+3^3+...+3^{50}+3^{51}\)
\(3A=3^2+3^3+3^4+...+3^{51}+3^{52}\)
\(3A-A=\left(3^2+...+3^{52}\right)-\left(3+...+3^{51}\right)\)
\(2A=3^{52}-3\)
\(A=\frac{3^{52}-3}{2}\)
Vậy...
Cbht