Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{10}-1\right)......\left(\dfrac{1}{2004}-1\right)\left(\dfrac{1}{2005}-1\right)\)
= \(\dfrac{-8}{9}.\dfrac{-9}{10}.......\dfrac{-2003}{2004}.\dfrac{-2004}{2005}\) = \(\dfrac{-8}{2005}\)
b) \(-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+3}}}\) = \(-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{1}}}\)
= \(-2+\dfrac{1}{-2+\dfrac{1}{-1}}\) = \(-2+\dfrac{1}{-3}\) = \(\dfrac{-7}{3}\)
\(\text{Câu 1 : }\) Tính
\(\text{a) }\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{10}-1\right)...\left(\dfrac{1}{2004}-1\right)\left(\dfrac{1}{2005}-1\right)\\ =\left(1-\dfrac{9}{9}\right)\left(\dfrac{1}{10}-\dfrac{10}{10}\right)...\left(\dfrac{1}{2004}-1\right)\left(\dfrac{1}{2005}-\dfrac{2005}{2005}\right)\\ =\dfrac{-8}{9}\cdot\dfrac{-9}{10}\cdot...\cdot\dfrac{-2003}{2004}\cdot\dfrac{-2004}{2005}\\ =\dfrac{\left(-8\right)\cdot\left(-9\right)\cdot..\cdot\left(-2003\right)\cdot\left(-2004\right)}{9\cdot10\cdot...\cdot2004\cdot2005}\\ =-\dfrac{8\cdot9\cdot...\cdot2003\cdot2004}{9\cdot10\cdot...\cdot2004\cdot2005}\\ =-\dfrac{8}{2005}\)
\(-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+3}}}\\ =-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{1}}}\\ =-2+\dfrac{1}{-2+\dfrac{1}{-1}}\\ =-2+\dfrac{1}{-3}\\ =-2+\dfrac{-1}{3}=-\dfrac{7}{3}\)
2) \(\dfrac{x}{y}=\left(\dfrac{x}{y}\right)^2\)
\(\Rightarrow\left(\dfrac{x}{y}\right)^2-\dfrac{x}{y}=0\)
\(\Rightarrow\dfrac{x}{y}\left(\dfrac{x}{y}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{x}{y}=0\Rightarrow x=0;y\in R\\\dfrac{x}{y}-1=0\Rightarrow\dfrac{x}{y}=1\Rightarrow x=y\end{matrix}\right.\)
3) \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}.2^5+2^{15}.1=2^{15}.33⋮33\rightarrowđpcm\)
4)\(\left(x-3\right)^2+\left(y+2\right)^2=0\)
\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\\\left(y+2\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-3\right)^2+\left(y+2\right)^2\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\Rightarrow x-3=0\Rightarrow x=3\\\left(y+2\right)^2=0\Rightarrow y+2=0\Rightarrow y=-2\end{matrix}\right.\)
\(\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}=0\)
\(\left\{{}\begin{matrix}\left(x-12+y\right)^{200}\ge0\\\left(x-4-y\right)^{200}\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-12+y\right)^{200}+\left(x-y-4\right)^{200}\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(x-12+y\right)^{200}=0\\\left(x-y-4\right)^{200}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-12+y=0\Rightarrow x+y=12\\x-y-4=0\Rightarrow x-y=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x+y\right)+\left(x-y\right)=12+4\Rightarrow x+y+x-y=16\Rightarrow2x=16\Rightarrow x=8\\y=8-4=4\end{matrix}\right.\)
Câu 1 :
a ) Tự tính ra thôi . ko còn cách nào đâu . Lấy ca - si - ô tính
b ) Tham khảo question ; https://olm.vn/hoi-dap/question/439215.html
Cứ đánh thì có .
Câu 1:
Ta có: \(\left[\dfrac{1}{2.5}+\dfrac{1}{5.8}+...+\dfrac{1}{65.68}\right]x-\dfrac{7}{34}=\dfrac{19}{68}\)
\(\Rightarrow\left[\dfrac{1}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+...+\dfrac{3}{65.68}\right)\right]x=\dfrac{33}{68}\)
\(\Rightarrow\left[\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{65}-\dfrac{1}{68}\right)\right]x=\dfrac{33}{68}\)
\(\Rightarrow\left[\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{68}\right)\right]x=\dfrac{33}{68}\)
\(\Rightarrow\dfrac{11}{68}x=\dfrac{33}{68}\)
\(\Rightarrow x=3\)
Vậy \(x=3.\)
a) \(\left(x+\dfrac{1}{2}\right)^2\)=\(\dfrac{4}{9}=\left(\dfrac{2}{3}\right)^2=\left(\dfrac{-2}{3}\right)^2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{2}{3}\\x+\dfrac{1}{2}=\dfrac{-2}{3}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\x=\dfrac{-7}{6}\end{matrix}\right.\)
b)\(|x+\dfrac{97}{306}|\)\(\)\(+5=-1\)
\(\Leftrightarrow|x+\dfrac{97}{106}|=-1-5=-1+\left(-5\right)=-6\)
\(\Rightarrow x\in\left\{\varnothing\right\}\)
Bài 2: Gọi 3 số lần lượt là a,b,c(a,b,c<481)
Ta có: \(a^2+b^2+c^2=481\left(1\right)\)
\(\dfrac{4}{3}a=b\Leftrightarrow a=\dfrac{3b}{4}\left(2\right)\)
\(\dfrac{3}{4}c=b\Leftrightarrow c=\dfrac{4b}{3}\left(3\right)\)
Từ \(\left(1\right),\left(2\right)va\left(3\right)\)ta có: \(\left(\dfrac{3b}{4}\right)^2+b^2+\left(\dfrac{4b}{3}\right)^2\)\(=481\)
\(\Rightarrow b=12\)
\(\Rightarrow a=\dfrac{3b}{4}=\dfrac{3.12}{4}=\dfrac{36}{4}=9\)
\(\Rightarrow c=\dfrac{4b}{3}=\dfrac{4.12}{3}=\dfrac{48}{3}=16\)
Tiên T.I.C.K Hiền nhoa!!^_^
a/dễ --> tự lm
b/ \(\left(x-\dfrac{4}{7}\right)\left(1\dfrac{3}{5}+2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{5}=0\\1\dfrac{3}{5}+2x=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\2x=\dfrac{8}{5}\Rightarrow x=\dfrac{4}{5}\end{matrix}\right.\)
Vậy...............
c/ \(\left(x-\dfrac{4}{7}\right):\left(x+\dfrac{1}{2}\right)>0\)
TH1: \(\left\{{}\begin{matrix}x-\dfrac{4}{7}>0\\x+\dfrac{1}{2}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{4}{7}\\x>-\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{4}{7}\)
TH2: \(\left\{{}\begin{matrix}x-\dfrac{4}{7}< 0\\x+\dfrac{1}{2}< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x< \dfrac{4}{7}\\x< -\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow x< -\dfrac{1}{2}\)
Vậy \(x>\dfrac{4}{7}\) hoặc \(x< -\dfrac{1}{2}\) thì thỏa mãn đề
d/ \(\left(2x-3\right):\left(x+1\dfrac{3}{4}\right)< 0\)
TH1: \(\left\{{}\begin{matrix}2x-3>0\\x+1\dfrac{3}{4}< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1,5\\x< -\dfrac{7}{4}\end{matrix}\right.\)(vô lý)
TH2: \(\left\{{}\begin{matrix}2x-3< 0\\x+1\dfrac{3}{4}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x< 1,5\\x>-\dfrac{7}{4}\end{matrix}\right.\)\(\Rightarrow-\dfrac{7}{4}< x< 1,5\)
Vậy...................
a: \(\Leftrightarrow2x-3=x\)
=>x=3
b: \(\Leftrightarrow2^x\cdot\dfrac{1}{2}+\dfrac{5}{4}\cdot2^x=\dfrac{7}{32}\)
=>2^x=1/8
=>x=-3
c: =>2x+7=-4
=>2x=-11
=>x=-11/2
d: =>(4x-3)^2*(4x-4)(4x-2)=0
hay \(x\in\left\{\dfrac{3}{4};1;\dfrac{1}{2}\right\}\)
1a) (0,4x - 2) - (1,5x + 1) - (-4x - 0,8) = 3,6
=> 0,4x - 2 - 1,5x - 1 + 4x + 0,8 = 3,6
=> 0,4x - 1,5x + 4x - 2 - 1 + 0,8 = 3,6
=> 2,9x - 2,2 = 3,6
=> 2,9x = 3,6 + 2,2
=> 2,9x = 5,8
=> x = 2
b)\(\left(\dfrac{3}{4}x+5\right)-\left(\dfrac{2}{3}x-4\right)-\left(\dfrac{1}{6}x+1\right)=\left(\dfrac{1}{3}x+4\right)-\left(\dfrac{1}{3}x-3\right)\)
\(\Rightarrow\dfrac{3}{4}x+5-\dfrac{2}{3}x+4-\dfrac{1}{6}x-1=\dfrac{1}{3}x+4-\dfrac{1}{3}x+3\)
\(\Rightarrow\left(\dfrac{3}{4}x-\dfrac{2}{3}x-\dfrac{1}{6}x\right)+\left(5+4-1\right)=7\)
\(\Rightarrow-\dfrac{1}{12}x+8=7\)
\(\Rightarrow-\dfrac{1}{12}x=-1\)
\(\Rightarrow x=12\)