K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2019

B1:

\(A=\left(x+2020\right)^4+\left|y-2019\right|-2018\)

+Có: \(\left(x+2020\right)^4\ge0với\forall x\\\left|y-2019\right|\ge0với\forall y\\\Rightarrow \left(x+2020\right)^4+\left|y-2019\right|-2018\ge-2018\\ \Leftrightarrow A\ge-2018 \)

+Dấu "=" xảy ra khi

\(\left(x+2020\right)^4=0\\ \Leftrightarrow x=-2020\)

\(\left|y-2019\right|=0\\ \Leftrightarrow y=2019\)

+Vậy \(A_{min}=-2018\) khi \(x=-2020,y=2019\)

27 tháng 8 2019

Bạn tham khảo tại đây:

Câu hỏi của lyly - Toán lớp 5 - Học toán với OnlineMath

5 tháng 1 2020

\(\frac{x-4}{2017}+\frac{x-3}{2018}+\frac{x-2}{2019}+\frac{x-1}{2020}=4\\ \Leftrightarrow\left(\frac{x-4}{2017}-1\right)+\left(\frac{x-3}{2018}-1\right)+\left(\frac{x-2}{2019}-1\right)+\left(\frac{x-1}{2020}-1\right)=4-1-1-1\)

\(\Leftrightarrow\frac{x-2021}{2017}+\frac{x-2021}{2018}+\frac{x-2021}{2019}+\frac{x-2021}{2020}=0\)

\(\Leftrightarrow\left(x-2021\right)\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}+\frac{1}{2020}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2021=0\\\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}+\frac{1}{2020}\ne0\end{matrix}\right.\)

\(\Leftrightarrow x=2021\)

Vậy...

18 tháng 10 2020

iem chỉ biết làm câu đầu , NHƯNG KO BÍT có  ĐUG HAY KO 

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2019}\right)\left(1-\frac{1}{2020}\right)\)

\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2018}{2019}\cdot\frac{2019}{2020}\)

\(A=\frac{1\cdot2\cdot3\cdot...\cdot2018\cdot2019}{2\cdot3\cdot4\cdot..\cdot2019\cdot2020}\)

\(A=\frac{1}{2020}\)

18 tháng 10 2020

Với \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)......\left(1-\frac{1}{2019}\right)\left(1-\frac{1}{2020}\right)\) , ta có : \(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{2018}{2019}\cdot\frac{2019}{2020}=\frac{1}{2020}\)

Ta có \(7A=\frac{7}{2020}\) , \(9A=\frac{9}{2020}\) , \(1+A=\frac{2021}{2020}\)

\(\frac{1+7A}{1+9A}=\frac{1+\frac{7}{2020}}{1+\frac{9}{2020}}=\frac{\frac{2027}{2020}}{\frac{2029}{2020}}\)

Ta thấy \(\frac{\frac{2027}{2020}}{\frac{2029}{2020}}\)có tử kém mẫu \(\frac{2}{2020}\)đơn vị và không thể rút gọn được nữa .

\(\Rightarrow\frac{1+7A}{1+9A}\)là p/s tối giản.

22 tháng 6 2019

Phần a vs phần b tính toán thông thường thôi mà bạn, vs 1 h/s lớp 7 thì ít nhất phải làm được chứ?? :((

a) \(x-\frac{4}{5}=\frac{7}{10}-\frac{3}{4}\)

\(\Leftrightarrow x-\frac{4}{5}=\frac{-1}{20}\)

\(\Leftrightarrow x=\frac{-1}{20}+\frac{4}{5}=\frac{15}{20}=\frac{3}{4}\)

b) \(2\frac{1}{3}-x=\frac{-5}{9}+2x\)

\(\Leftrightarrow2\frac{1}{3}-\frac{-5}{9}=2x+x\)

\(\Leftrightarrow3x=\frac{7}{3}+\frac{5}{9}\)

\(\Leftrightarrow3x=\frac{26}{9}\)

\(\Leftrightarrow x=\frac{26}{9}:3=\frac{26}{27}\)

d) .............................. ( Đề bài)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}\)\(-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2010}\)

\(\Leftrightarrow-\frac{1}{x+3}=\frac{1}{2010}\)

\(\Leftrightarrow\frac{1}{-\left(x+3\right)}=\frac{1}{2010}\)\(\Leftrightarrow-\left(x+3\right)=2010\)

\(\Leftrightarrow-x-3=2010\) \(\Leftrightarrow-x=2010+3=2013\)

\(\Leftrightarrow x=-2013\)

Bạn tự kết luận nha!

22 tháng 6 2019

c)

\(\frac{x+3}{2016}+\frac{x+2}{2017}=\frac{x+1}{2018}+\frac{x}{2019}\\ \Leftrightarrow\frac{x+3}{2016}+1+\frac{x+2}{2017}+1=\frac{x+1}{2018}+1+\frac{x}{2019}+1\\ \Leftrightarrow\frac{x+2019}{2016}+\frac{x+2019}{2017}-\frac{x+2019}{2018}-\frac{x+2019}{2019}=0\\ \Leftrightarrow\left(x+2019\right)\left(\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}\right)=0\\ \Rightarrow x-2019=0\\ \Rightarrow x=2019\)

17 tháng 9 2020

1,               \(\left(1,5.x-\frac{4}{5}\right).\left(\frac{1}{2019}-\frac{1}{2018}\right)\)\(=0\)

               \(\Leftrightarrow\)                                         \(1,5.x-\frac{4}{5}=0:\left(\frac{1}{2019}-\frac{1}{2018}\right)\)

                                                                   \(1,5.x-\frac{4}{5}=0\)

                                                                               \(1,5.x=0+\frac{4}{5}\)

                                                                               \(1,5.x=\frac{4}{5}\)

                                                                                        \(x=\frac{4}{5}:1,5\)

                                                                                        \(x=\frac{4}{5}:\frac{15}{10}\)

                                                                                        \(x=\frac{4}{5}.\frac{10}{15}\)

                                                                                  \(\Rightarrow x=\frac{8}{15}\)

2,                              \(\frac{2x}{3}+\frac{1}{3}=\left|-\frac{2}{5}\right|\)

                             \(\Leftrightarrow\frac{2x+1}{3}=\frac{2}{5}\)

                                      \(2x+1=\frac{2}{5}.3\)

                                      \(2x+1=\frac{6}{5}\)

                                               \(2x=\frac{6}{5}-1\)

                                               \(2x=\frac{1}{5}\)

                                                  \(x=\frac{1}{5}:2\)

                                                  \(x=\frac{1}{5}.\frac{1}{2}\)

                                            \(\Rightarrow x=\frac{1}{10}\)

22 tháng 6 2019

\(\frac{\left(\frac{2}{3}\right)^3.\left(\frac{-3}{4}\right)^2.\left(-1\right)^{2019}}{\left(\frac{2}{5}\right)^2.\left(\frac{-5}{12}\right)^3}:\sqrt{\frac{9}{25}}\)\(=\frac{\frac{2^3}{3^3}.\frac{-3^2}{4^2}.\left(-1\right)}{\frac{2^2}{5^2}.\frac{-5^3}{12^3}}:\frac{3}{5}\)

\(=\frac{\frac{2^3}{5^3}.\frac{-3^2}{2^4}.\left(-1\right)}{\frac{2^2}{5^2}.\frac{-5^3}{2^6.3^3}}:\frac{3}{5}=\frac{\frac{-1}{3.2}}{\frac{-5}{2^4.3^3}}:\frac{3}{5}\)\(=\frac{-1}{3.2}.\frac{-2^4.3^3}{5}.\frac{5}{3}\)

\(=\frac{2^3.3^2}{5}.\frac{5}{3}=24\)

21 tháng 7 2019

a) \(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)

=> \(\left(\frac{x-6}{7}+1\right)+\left(\frac{x-7}{8}+1\right)+\left(\frac{x-8}{9}+1\right)=\left(\frac{x-9}{10}+1\right)+\left(\frac{x-10}{11}+1\right)+\left(\frac{x-11}{12}+1\right)\)

=> \(\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\frac{x+1}{10}-\frac{x+1}{11}+\frac{x+1}{12}=0\)

=> \(\left(x+1\right)\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)=0\)

=>  x + 1 = 0

=> x = -1

21 tháng 7 2019

b) \(\frac{x-1}{2020}+\frac{x-2}{2019}-\frac{x-3}{2018}=\frac{x-4}{2017}\)

=> \(\left(\frac{x-1}{2020}-1\right)+\left(\frac{x-2}{2019}-1\right)-\left(\frac{x-3}{2018}-1\right)=\left(\frac{x-4}{2017}-1\right)\)

=> \(\frac{x-2021}{2020}+\frac{x-2021}{2019}-\frac{x-2021}{2018}=\frac{x-2021}{2017}\)

=> \(\left(x-2021\right)\left(\frac{1}{2020}+\frac{1}{2019}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)

=> x - 2021 = 0

=> x = 2021

c) \(\left(\frac{3}{4}x+3\right)-\left(\frac{2}{3}x-4\right)-\left(\frac{1}{6}x+1\right)=\left(\frac{1}{3}x+4\right)-\left(\frac{1}{3}x-3\right)\)

=> \(\frac{3}{4}x+3-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}x+3\)

=> \(-\frac{1}{12}x+6=7\)

=> \(-\frac{1}{12}x=1\)

=> x = -12