K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2016

a)\(f\left(x\right)=x^4+2x^3-x-2\)

\(=x^4+2x^3+x^2-x^2-x-2\)

\(=\left(x^2+x\right)^2-\left(x^2+x\right)-2\)

Đặt \(x^2+x=t\) ta có:

\(=t^2-t-2\)\(=\left(t-2\right)\left(t+1\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x+1\right)\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+1\right)\)

19 tháng 8 2016

Bài 1 :

\(x^2+4x-y^2+4\)

\(=\left(x^2+4x+4\right)-y^2\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2+y\right)\left(x+2-y\right)\)

Bài 2 : Ta có : \(a+b+c=0\)

\(\Rightarrow a+b=-c\)

\(\Rightarrow\left(a+b\right)^3=-c^3\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Rightarrow a^3+b^3-3abc=-c^3\) ( Vì \(a+b=-c\) )

\(\Rightarrow a^3+b^3+c^3=3abc\)

19 tháng 8 2016

Bài 1:

x2 +4x-y2+4

=(x2+4x+4)-y2

=(x+2)2-y2

=(x-y+2)(x+y+2)

Bài 2:

 a3+b3+c3 =  3abc

=>a3+b3+c3-3abc=0

=>[(a+b)3+c3]-3ab(a+b)-3abc=0

=>(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)=0

=>(a+b+c)(a2+b2+c2-ac-bc-ab)=0

Từ a+b+c=0

=>0*(a2+b2+c2-ac-bc-ab)=0 (luôn đúng)

 

4 tháng 8 2019

a,\(-4x^2+4x-1\)

\(\Leftrightarrow\left(-2x-1\right)^2\)

b,\(\left(2x+1\right)^2-4\left(x-1\right)^2\)

\(\Rightarrow\left[2x+1-2\left(x-1\right)\right].\left[2x+1+2\left(x-1\right)\right]\)

\(\Rightarrow\left(2x+1-2x+2\right)\left(2x+1+2x-2\right)\)

\(\Rightarrow3\left(4x-1\right)\)

c,\(\left(2x-y\right)^2-4x^2+12x-9\)

\(\Leftrightarrow\left(2x+y\right)^2-\left(4x^2-12x+9\right)\)

\(\Leftrightarrow\left(2x+y\right)^2-\left(2x-3\right)^2\)

\(\Leftrightarrow\left(2x+y-2x+3\right)\left(2x+y+2x-3\right)\)

\(\Rightarrow\left(y+3\right)\left(4x+y-3\right)\)

d,\(\left(x+1\right)^2-4\left(x+1\right)y^2+4y^4\)

\(\Leftrightarrow\left(x+1\right)^2-2\left(x+1\right)2y^2+2^2y^4\)

\(\Leftrightarrow\left(x+1\right)^2-2\left(x+1\right)2y^2+4\left(y^2\right)^2\)

\(\Leftrightarrow\left(x+1\right)^2-2\left(x+1\right)-2y^2+\left(2y^2\right)^2\)

\(\Leftrightarrow\left(x+1-2y^2\right)^2\)

16 tháng 10 2015

​theo đề bài ta có: (x-1)^2=x^2-2x+1

ta lại có x^3:x^2=x

do đó thương của phép chia đã cho là x+m

(x^3+ax+b) chia hết cho x^2-2x+1

<=> x^3+ax+b=(x^2-2x+1)(x+m)

<=> x^3+ax+b=x^3+x^2m-2x^2-2xm+x+m

<=> x^3+ax+b=x^3+(m-2)x^2+(-2m+1)x+m

Đồng nhất 2 vế ta được :m-2=0=>m=2

                                          -2m+1=a =>-2.2+1=-3=>a=-3

                                            b=m=>b=2

 

29 tháng 11 2018

\(x^3-4x^2+12x-27\)

\(=x^3-3x^2-x^2+3x+9x-27\)

\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)

6 tháng 1 2019

ai nhanh tui se k

6 tháng 1 2019

b) Ta có: 

\(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\)

Suy ra đpcm.

19 tháng 8 2017

a, = (x + y)5 - (x5 + y5)

    = (x + y)5 - (x + y)(x4 - x3y + x2y2 - xy3 + y4)

    = (x + y) [(x + y)4 - x4 + x3y - x2y2 + xy3 - y4]

    = (x + y) (5x3y + 5x2y2 + 5xy3)

    = 5xy(x + y)(x2 + xy + y2)

b, = x(x2 - 5xy - 14y2)

    = x(x2 - 7xy + 2xy - 14y2)

    = x(x + 2y)(x - 7y)

4 tháng 8 2019

\(x^3-3x^2+3x-1\) =0

=>\(\left(x-1\right)^3\)=0

=>x-1=0

=>x=1

vậy x =1

4 tháng 8 2019

\(x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)