Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(f\left(x\right)=x^4+2x^3-x-2\)
\(=x^4+2x^3+x^2-x^2-x-2\)
\(=\left(x^2+x\right)^2-\left(x^2+x\right)-2\)
Đặt \(x^2+x=t\) ta có:
\(=t^2-t-2\)\(=\left(t-2\right)\left(t+1\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x+1\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+1\right)\)
Bài 1 :
\(x^2+4x-y^2+4\)
\(=\left(x^2+4x+4\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2+y\right)\left(x+2-y\right)\)
Bài 2 : Ta có : \(a+b+c=0\)
\(\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^3=-c^3\)
\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Rightarrow a^3+b^3-3abc=-c^3\) ( Vì \(a+b=-c\) )
\(\Rightarrow a^3+b^3+c^3=3abc\)
Bài 1:
x2 +4x-y2+4
=(x2+4x+4)-y2
=(x+2)2-y2
=(x-y+2)(x+y+2)
Bài 2:
a3+b3+c3 = 3abc
=>a3+b3+c3-3abc=0
=>[(a+b)3+c3]-3ab(a+b)-3abc=0
=>(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)=0
=>(a+b+c)(a2+b2+c2-ac-bc-ab)=0
Từ a+b+c=0
=>0*(a2+b2+c2-ac-bc-ab)=0 (luôn đúng)
a,\(-4x^2+4x-1\)
\(\Leftrightarrow\left(-2x-1\right)^2\)
b,\(\left(2x+1\right)^2-4\left(x-1\right)^2\)
\(\Rightarrow\left[2x+1-2\left(x-1\right)\right].\left[2x+1+2\left(x-1\right)\right]\)
\(\Rightarrow\left(2x+1-2x+2\right)\left(2x+1+2x-2\right)\)
\(\Rightarrow3\left(4x-1\right)\)
c,\(\left(2x-y\right)^2-4x^2+12x-9\)
\(\Leftrightarrow\left(2x+y\right)^2-\left(4x^2-12x+9\right)\)
\(\Leftrightarrow\left(2x+y\right)^2-\left(2x-3\right)^2\)
\(\Leftrightarrow\left(2x+y-2x+3\right)\left(2x+y+2x-3\right)\)
\(\Rightarrow\left(y+3\right)\left(4x+y-3\right)\)
d,\(\left(x+1\right)^2-4\left(x+1\right)y^2+4y^4\)
\(\Leftrightarrow\left(x+1\right)^2-2\left(x+1\right)2y^2+2^2y^4\)
\(\Leftrightarrow\left(x+1\right)^2-2\left(x+1\right)2y^2+4\left(y^2\right)^2\)
\(\Leftrightarrow\left(x+1\right)^2-2\left(x+1\right)-2y^2+\left(2y^2\right)^2\)
\(\Leftrightarrow\left(x+1-2y^2\right)^2\)
theo đề bài ta có: (x-1)^2=x^2-2x+1
ta lại có x^3:x^2=x
do đó thương của phép chia đã cho là x+m
(x^3+ax+b) chia hết cho x^2-2x+1
<=> x^3+ax+b=(x^2-2x+1)(x+m)
<=> x^3+ax+b=x^3+x^2m-2x^2-2xm+x+m
<=> x^3+ax+b=x^3+(m-2)x^2+(-2m+1)x+m
Đồng nhất 2 vế ta được :m-2=0=>m=2
-2m+1=a =>-2.2+1=-3=>a=-3
b=m=>b=2
\(x^3-4x^2+12x-27\)
\(=x^3-3x^2-x^2+3x+9x-27\)
\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
a, = (x + y)5 - (x5 + y5)
= (x + y)5 - (x + y)(x4 - x3y + x2y2 - xy3 + y4)
= (x + y) [(x + y)4 - x4 + x3y - x2y2 + xy3 - y4]
= (x + y) (5x3y + 5x2y2 + 5xy3)
= 5xy(x + y)(x2 + xy + y2)
b, = x(x2 - 5xy - 14y2)
= x(x2 - 7xy + 2xy - 14y2)
= x(x + 2y)(x - 7y)
\(x^3-3x^2+3x-1\) =0
=>\(\left(x-1\right)^3\)=0
=>x-1=0
=>x=1
vậy x =1
\(x^3-3x^2+3x-1=0\)
\(\Leftrightarrow\left(x-1\right)^3\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)