K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2017

Có : \(2x^2+3x+2\)

\(\Leftrightarrow\) \(\left(x^2+2x+1^2\right)+\left(x^2+x+1^2\right)\)

\(\Leftrightarrow\) \(\left(x^2+2.x.1+1^2\right)\) + \(\left(x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)\)

\(\Leftrightarrow\) \(\left(x+1\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+1\right)^2\ge0và\left(x+\frac{1}{2}\right)^2\ge0\)

\(\Rightarrow\) \(\left(x+1\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

Vậy \(2x^2+3x+2>0\left(\forall_x\right)\)

23 tháng 2 2017

a)

\(2x^2+3x+2=\left(x^2+2x+1\right)+\left(x^2+2\cdot\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}\\ =\left(x+1\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

(vì >3/4 nên >0)

27 tháng 8 2020

Bài 1.

a) ( 7x - 3 )2 - 5x( 9x + 2 ) - 4x2 = 18

<=> 49x2 - 42x + 9 - 45x2 - 10x - 4x2 = 18

<=> -52x + 9 = 18

<=> -52x = 9

<=> x = -9/52 

b) ( x - 7 )2 - 9( x + 4 )2 = 0

<=> x2 - 14x + 49 - 9( x2 + 8x + 16 ) = 0

<=> x2 - 14x + 49 - 9x2 - 72x - 144 = 0

<=> -8x2 - 86x - 95 = 0 

<=> -8x2 - 10x - 76x - 95 = 0

<=> -8x( x + 5/4 ) - 76( x + 5/4 ) = 0

<=> ( x + 5/4 )( -8x - 76 ) = 0

<=> \(\orbr{\begin{cases}x+\frac{5}{4}=0\\-8x-76=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{4}\\x=-\frac{19}{2}\end{cases}}\)

c) ( 2x + 1 )2 + ( 4x - 1 )( x + 5 ) = 36

<=> 4x2 + 4x + 1 + 4x2 + 19x - 5 = 36

<=> 8x2 + 23x - 4 - 36 = 0

<=> 8x2 + 23x - 40 = 0

=> Vô nghiệm ( lớp 8 chưa học nghiệm vô tỉ nghen ) :))

Bài 2.

a) x2 - 12x + 39 = ( x2 - 12x + 36 ) + 3 = ( x - 6 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

b) 17 - 8x + x2 = ( x2 - 8x + 16 ) + 1 = ( x - 4 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

c) -x2 + 6x - 11 = -( x2 - 6x + 9 ) - 2 = -( x - 3 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )

d) -x2 + 18x - 83 = -( x2 - 18x + 81 ) - 2 = -( x - 9 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )

20 tháng 4 2019

1a

x^2-8x<0

<=> x(x-8)<0

th1: x<0 và x-8>0

 x<0 và x>8

<=> 8<x<0 ( vô lý)

th2: x>0 và x-8<0

<=> x>0 và x<8

<=> 0<x<8( tm)

vậy........

20 tháng 4 2019

a) \(x^2-8x< 0\)

\(\Leftrightarrow x\left(x-8\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x>0\\x-8< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x-8>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>0\\x< 8\end{cases}}\)         hoặc   \(\hept{\begin{cases}x< 0\\x>8\end{cases}}\) (loại)

\(\Leftrightarrow0< x< 8\)

b) \(x^2< 6x-5\)

\(\Leftrightarrow x^2-6x+5< 0\)

\(\Leftrightarrow x^2-x-5x+5< 0\)

\(\Leftrightarrow x\left(x-1\right)-5\left(x-1\right)< 0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x-1>0\\x-5< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-1< 0\\x-5>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>1\\x< 5\end{cases}}\)          hoặc  \(\hept{\begin{cases}x< 1\\x>5\end{cases}}\) (loại)

\(\Leftrightarrow1< x< 5\)

c) \(\frac{x-3}{x-2}< 0\)

\(\Leftrightarrow\hept{\begin{cases}x-3>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3< 0\\x-2>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>3\\x< 2\end{cases}}\)  (loại)  hoặc  \(\hept{\begin{cases}x< 3\\x>2\end{cases}}\)

\(\Leftrightarrow2< x< 3\)

d) \(\frac{x+1}{x-3}>2\) (ĐK: \(x\ne3\) )

\(\Leftrightarrow\frac{x+1}{x-3}-2>0\)

\(\Leftrightarrow\frac{x+1-2\left(x-3\right)}{x-3}>0\)

\(\Leftrightarrow\frac{-x+7}{x-3}>0\)

\(\Leftrightarrow\hept{\begin{cases}-x+7>0\\x-3>0\end{cases}}\) hoặc \(\hept{\begin{cases}-x+7< 0\\x-3< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-x>-7\\x>3\end{cases}}\)     hoặc  \(\hept{\begin{cases}-x< -7\\x< 3\end{cases}}\)  

\(\Leftrightarrow\hept{\begin{cases}x< 7\\x>3\end{cases}}\)              hoặc   \(\hept{\begin{cases}x>7\\x< 3\end{cases}}\) (loại)

\(\Leftrightarrow3< x< 7\)

16 tháng 9 2018

a) \(x^2+8x+17=\left(x^2+8x+16\right)+1=\left(x+4\right)^2+1\ge1>0\)

\(x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

16 tháng 9 2018

giải giúp mik với

21 tháng 4 2018

bai dai qua

21 tháng 4 2018

a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9

                           (9+x)= -9-x khi 9+x <0 hoặc x <-9

1)pt   9+x=2 với x >_ -9

    <=> x  = 2-9

  <=>  x=-7 thỏa mãn điều kiện (TMDK)

2) pt   -9-x=2 với x<-9

         <=> -x=2+9

             <=>  -x=11

                       x= -11 TMDK

 vậy pt có tập nghiệm S={-7;-9}

các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd

nhu cau o trên mk lam 9+x>_0    hoặc x>_0

với số âm thi -2x>_0  hoặc x <_ 0  nha

6 tháng 7 2019

Bài 1:

a) \(ay-ax-2x+2y\)

\(=-a\left(x-y\right)-2\left(x-y\right)\)

\(=\left(x-y\right)\left(-a-2\right)\)

b) \(5ax-7by-7ay+5bx\)

\(=5x\left(a+b\right)-7y\left(a+b\right)\)

\(=\left(a+b\right)\left(5x-7y\right)\)

c) \(4x^2-9x+5\)

\(=4x^2-4x-5x+5\)

\(=4x\left(x-1\right)-5\left(x-1\right)\)

\(=\left(x-1\right)\left(4x-5\right)\)

d) \(x^2-8x+15\)

\(=x^2-3x-5x+15\)

\(=x\left(x-3\right)-5\left(x-3\right)\)

\(=\left(x-3\right)\left(x-5\right)\)

Bài 2:

a) \(x^2+x+\frac{1}{2}\)

\(=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{1}{4}>0\forall x\)

b) \(x^2+5x+7\)

\(=x^2+2\cdot x\cdot\frac{5}{2}+\frac{25}{4}+\frac{3}{4}\)

\(=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}>0\forall x\)

c) \(2x^2-3x+9\)

\(=2\left(x^2-\frac{3}{2}x+\frac{9}{2}\right)\)

\(=2\left(x^2-2\cdot x\cdot\frac{3}{4}+\frac{9}{16}+\frac{63}{16}\right)\)

\(=2\left[\left(x-\frac{3}{4}\right)^2+\frac{63}{16}\right]\)

\(=2\left(x-\frac{3}{4}\right)^2+\frac{63}{8}>0\forall x\)

6 tháng 7 2019

Bài 1: Phân tích đa thức thành nhân tử.

a, ay - ax - 2x + 2y

=a(y-x)+2(y-x)=(y-x)(a+2

b, 5ax - 7by - 7ay + 5bx

=5x(a+b)-7y(b+a)=(a+b)(5x-7y)

c, 4x^2 - 9x + 5

=4x2-4x-5x+5=4x(x-1)-5(x-1)=(x-1)(4x-5)

d, x^2 - 8x + 15

=x2-3x-5x+15=x(x-3)-5(x-3)=(x-3)(x-5)

15 tháng 4 2017

câu a : 

 \(a^2+b^{^{ }2}\ge2ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)

 ( a - b ) ^ 2 >= 0 là điều hiển nhiên nên suy ra \(a^2+b^2\ge2ab\)với mọi a ,b 

câu b : 

\(^{x^2+2x+3\ge0\Leftrightarrow x^2+2x+1+2\ge0\Leftrightarrow\left(x+1\right)^2+2\ge0}\)

 vì ( x+1 )^2 >= 0 nên (x + 1 )^2 +2 > 0 với mọi x