K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2020

1.

a) Xét ΔABC có \(\frac{AD}{AB}=\frac{AE}{AC}\left(gt\right)\) => DE//BC

=> \(\frac{AD}{BD}=\frac{AE}{EC}\) (đ/lí Ta-lét)

b) Ta có: AB = AD + BD = 2 + 1 = 3 (cm)

Xét ΔABC có DE//BC => \(\frac{AD}{AB}=\frac{DE}{BC}=\frac{2}{3}\) (hệ quả đ/lí Ta-lét)

=> BC = \(\frac{AB.DE}{AD}=\frac{3.3}{2}=4,5\left(cm\right)\)

2.

a) Ta có: BD = AB - AD = 11 - 4 = 7 (cm)

Xét ΔABC có DE//BC (gt), theo đ/lí Ta-lét có: \(\frac{AE}{EC}=\frac{AB}{BD}=\frac{4}{7}\)

b) Ta có: \(\frac{AE}{EC}=\frac{4}{7}\left(cmt\right)\) => \(\frac{AE}{EC-AE}=\frac{4}{7-4}\Rightarrow\frac{AE}{1,5}=\frac{4}{3}\)

=> AE = \(\frac{4.1,5}{3}=2\left(cm\right)\)

Xét ΔABC có DE//BC (gt) => \(\frac{AD}{AB}=\frac{DE}{BC}\) (hệ quả đ/lí Ta-lét)

=> DE = \(\frac{AD.BC}{AB}=\frac{4.8}{11}=\frac{32}{11}\left(cm\right)\)

3.

a) Xét ΔOCD có AB//CD (gt), theo đ/lí Ta-lét có: \(\frac{OC}{OA}=\frac{OD}{OB}\)

=> OA.OD = OB.OC

b) Do \(\frac{OC}{OA}=\frac{OD}{OB}\)(cmt) => \(\frac{OC}{OA+OC}=\frac{OD}{OB+OD}\Rightarrow\frac{OC}{AC}=\frac{OD}{BD}\) (1)

Do MN//AB => OM//AB; ON//AB

Xét ΔABD có OM//AB (cmt) => \(\frac{OM}{AB}=\frac{OD}{BD}\) (hệ quả đ/lí Ta-lét) (2)

Xét ΔABC có ON//AB (cmt) => \(\frac{ON}{AB}=\frac{OC}{AC}\) (hệ quả đ/lí Ta-lét) (3)

Từ (1), (2), (3) => \(\frac{OM}{AB}=\frac{ON}{AB}\) => OM = ON

Bài 1: 1) Trên tia Ax lấy các điểm B, C, D  theo thứ tự đó đó sao cho cho: AB = 2 cm, BC = 4 cm và CD = 8 cm.a) Tính các tỷ số số AB/ BC và  BC/CDb) Chứng minh BC2 = AB.CD2) Trên đường thẳng d , lấy 4 điểm A, B, C, D theo thứ tự đó sao cho cho AB/BC = 3/5, BC/CD = 5/6.a) Tính tỉ số AB/CDb) Cho biết AD = 28 cm. Tính độ dài các đoạn thẳng AB, BC và CD Bài 2: Cho tam giác ABC và các điểm D, E lần lượt nằm trên hai...
Đọc tiếp

Bài 1: 1) Trên tia Ax lấy các điểm B, C, D  theo thứ tự đó đó sao cho cho: AB = 2 cm, BC = 4 cm và CD = 8 cm.

a) Tính các tỷ số số AB/ BC và  BC/CD

b) Chứng minh BC2 = AB.CD

2) Trên đường thẳng d , lấy 4 điểm A, B, C, D theo thứ tự đó sao cho cho AB/BC = 3/5, BC/CD = 5/6.

a) Tính tỉ số AB/CD

b) Cho biết AD = 28 cm. Tính độ dài các đoạn thẳng AB, BC và CD 

Bài 2: Cho tam giác ABC và các điểm D, E lần lượt nằm trên hai cạnh AB, AC sao cho AD/AB = AE/AC.

a) Chứng minh AD/BD = AE/EC

b) Cho biết AD = 2 cm, BD =1 cm và AE = 4 cm. Tính AC.

Bài 3: Cho tam giác ABC có D, E lần lượt thuộc các cạnh AB và AC sao cho BD/AB = CE/CA.

a) Chứng minh AD/AB = AE/AC

b) Cho biết AD = 2 cm, BD = 1 cm và AC = 4 cm. Tính EC

Bài 4: Cho tam giác ACE có AC = 11 cm. Lấy điểm B trên cạnh AC sao cho BC = 6cm. Lấy điểm D trên cạnh AE sao cho BD song song với EC. Giả sử AE + ED = 25,5 cm. Hãy tính:

a) Tỷ số DE/AE

b) Độ dài các đoạn thẳng AE, DE và AD.

Bài 5: Cho tam giác ABC và điểm D trên cạnh BC sao cho BD/BC = 3/4, điểm E trên đoạn thẳng AD sao cho cho AE/AD = 1/3. Gọi K là giao điểm của BE và AC. a) Tính tỷ số số AK/KC

b) Vẽ hình bình hành ABCM. Trên cạnh MC lấy điểm G sao cho MG= 1/4 MC. Gọi N là giao điểm của AG và BM. Tính tỉ số MN/MB.

0
28 tháng 5 2018

29 tháng 3 2020

a)-Vì BD/AB=CE/CA

⇒DE//BC(dinh li dao cua Ta-let)

⇒AD/AB=AE/AC(DPCM)

b)Goi EC=X

Ap dung dinh li Ta-let vao tam giac ABC co

BD/DA=EC/EA

⇒1/2=x/4-x

⇒2x=4-x

⇒x=4/3

Đây nha~~~

29 tháng 3 2020

a)-Vì BD/AB=CE/CA

⇒DE//BC(dinh li dao cua Ta-let)

⇒AD/AB=AE/AC(DPCM)

b)Goi BC=X

Ap dung dinh li Ta-let vao tam giac ABC co

BD/DA=EC/EA

⇒1/2=x/4-x

⇒2x=4-x

⇒x=4/3

Đây nha~~~

20 tháng 3 2020

Tự vẽ hình.

a) Xét tam giác OAB có AB // CD

⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)

=> OC = 4cm, DC = 6cm

Vậy OC = 4cm và DC = 6cm

b) Xét tam giác FAB có DC // AB

⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )

c) Theo (1), ta đã có:

OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)

Vì MN // AB mà AB // DC => MN // DC

Xét tam giác ADC có MO// DC

⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)

CMTT : ONDC=OBDBONDC=OBDB (4)

Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )

8 tháng 3 2020

a, CM: AD//AB=AE//AC

Xét tam giác ABC có:

AD//AB vì đề bài cho cạnh BC lấy D ( lấy sao cho AD=AB)

AE//AC vì đề bài cho cạnh AC lấy E  ( lấy sao cho AE=AC)

VÌ ĐỀU CHUNG MỘT TAM GIÁC NÊN 3 CẠNH = NHAU 

\(\Rightarrow\) AD/AB=AE/AC.

b, AB = 2cm vì AD= 2cm( AD//AB \(\Rightarrow=\)nhau và = 2 cm)

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E

30 tháng 4 2017

a,Xét tam giác ADE va tam giác ACB :

Có:AE/AB=3/9=1/3

 góc chung

AD/AC=4/12=1/3

=>tg ADE đồng dạng tg ACB(cgc)

=>AD/AC=AE/AB

b, Vì tg ADE đồng dạng tg ACB(cmt)

=> AD/AC=AE/AB=DE/CB

Mà:AD/AC=AE/AB=1/3

=>DE/CB=1/3