K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2016

a) Nếu n2+2014 là số chính phương với n nguyên dương thì n2 + 2014 = k2 → k2 – n2 = 2014

=> (k – n)(k + n) = 2014 (*)

Vậy (k + n) – (k – n) = 2n là số chẵn nên k và n phải cùng chẵn hoặc cùng lẻ.

Mặt khác (k – n)(k + n) = 2014 là chẵn

Nên (k – n), (k + n) đều chia hết cho 2 hay (k – n)(k + n) chia hết cho 4

Mà 2014 không chia hết cho 4

Suy ra đẳng thức (*) không thể xảy ra.

Vậy không có số nguyên dương n nào để số n2 + 2014 là số chính phương

b) Với 2 số a, b dương:

Xét: a2 + b2 – ab ≤ 1

<=> (a + b)(a2 + b2 – ab) ≤ (a + b) (vì a + b > 0)

<=> a3 + b3 ≤ a + b

<=> (a3 + b3)(a3 + b3) ≤ (a + b)(a5 + b5) (vì a3 + b3 = a5 + b5)

<=> a6 + 2a3b3 + b6 ≤ a6 + ab5 + a5b + b6

<=> 2a3b3 ≤ ab5 + a5b

<=> ab(a4 – 2a2b2 + b4) ≥ 0

<=> ab(a2 - b2) ≥ 0 đúng ∀ a, b > 0 .

Vậy: a2 + b2 ≤ 1 + ab với a, b dương và a3 + b3 = a5 + b5

2 tháng 12 2016

Cảm ơn bạn nha ! @Phùng Khánh Linh

27 tháng 7 2016

a) Nếu n2+2014 là số chính phương với n nguyên dương thì n2 + 2014 = k2 → k2 – n2 = 2014

→ (k – n)(k + n) = 2014 (*)

Vậy (k + n) – (k – n) = 2n là số chẵn nên k và n phải cùng chẵn hoặc cùng lẻ.

Mặt khác (k – n)(k + n) = 2014 là chẵn

Nên (k – n), (k + n) đều chia hết cho 2 hay (k – n)(k + n) chia hết cho 4

Mà 2014 không chia hết cho 4

Suy ra đẳng thức (*) không thể xảy ra.

Vậy không có số nguyên dương n nào để số n2 + 2014 là số chính phương 

b) Với 2 số a, b dương:

Xét: a2 + b2 – ab ≤ 1

↔ (a + b)(a2 + b2 – ab) ≤ (a + b) (vì a + b > 0)

↔a3 + b3 ≤ a + b

↔ (a3 + b3)(a3 + b3) ≤ (a + b)(a5 + b5) (vì a3 + b3 = a5 + b5)

↔ a6 + 2a3b3 + b6 ≤ a6 + ab5 + a5b + b6

↔ 2a3b3 ≤ ab5 + a5b

↔ ab(a4 – 2a2b2 + b4) ≥ 0

↔ ab(a2 - b2) ≥ 0 đúng ∀ a, b > 0 .

Vậy: a2 + b2 ≤ 1 + ab với a, b dương và a3 + b3 = a5 + b5

27 tháng 7 2016

a)Giả sử n2+2014 là số chính phương với n nguyên dương thì n2 + 2014 = k2

=> k2 – n2 = 2014

=> (k – n)(k + n) = 2014 (1)

Mà (k + n) – (k – n) = 2n là số chẵn nên k và n phải cùng chẵn hoặc cùng lẻ.

Mặt khác (k – n)(k + n) = 2014 là chẵn

Nên (k – n), (k + n) đều chia hết cho 2 hay (k – n)(k + n) chia hết cho 4

Mà 2014 không chia hết cho 4

Suy ra đẳng thức (1) không thể xảy ra.

Vậy không có số nguyên dương n nào để số n2 + 2014 là số chính phương 

b) Ta có : 2 số a, b dương:

Xét: a2 + b2 – ab ≤ 1

<=> (a + b)(a2 + b2 – ab) ≤ (a + b) (vì a + b > 0)

<=>a3 + b3 ≤ a + b

<=> (a3 + b3)(a3 + b3) ≤ (a + b)(a5 + b5) (vì a3 + b3 = a5 + b5)

<=> a6 + 2a3b3 + b6 ≤ a6 + ab5 + a5b + b6

<=> 2a3b3 ≤ ab5 + a5b

<=> ab(a4 – 2a2b2 + b4) ≥ 0

<=> ab(a2 - b2) ≥ 0 đúng với mọi a, b > 0 .

Vậy: a2 + b2 ≤ 1 + ab với a, b dương và a3 + b3 = a5 + b5

AH
Akai Haruma
Giáo viên
25 tháng 5 2018

Lời giải:

a) Ta thấy với $n$ là số nguyên dương thì $n^2$ chia $4$ có thể dư $0$ hoặc $1$

\(2014\equiv 2\pmod 4\)

Do đó \(n^2+2014\equiv 2,3\pmod 4\)

Mà một số chính phương chia $4$ chỉ có thể dư $0,1$, nên $n^2+2014$ không thể là số chính phương.

b)

Áp dụng BĐT Bunhiacopxky:

\((a^5+b^5)(a+b)\geq (a^3+b^3)^2\)

\(a^5+b^5=a^3+b^3\Rightarrow (a^5+b^5)(a+b)\geq (a^5+b^5)(a^3+b^3)\)

\(\Rightarrow a+b\geq a^3+b^3\)

\(\Leftrightarrow (a+b)[1-(a^2-ab+b^2)]\geq 0\)

\(\Rightarrow 1-(a^2-ab+b^2)\geq 0\)

\(\Rightarrow 1+ab\geq a^2+b^2\) (ta có đpcm)

Dấu bằng xảy ra khi \(a=b=1\)

27 tháng 7 2016

Mình chỉ biết câu 2 thoi được hong?

n2+n+1

= n2+n+\(\frac{1}{4}\)+\(\frac{3}{4}\)

= (n+\(\frac{1}{2}\))2 +\(\frac{3}{4}\)

Chứng tỏ đó không phải là số chính phương

1 tháng 11 2019

Trả lời câu 1 thôi nha

Xét \(ab+cd=ab\left(c^2+d^2\right)+cd\left(a^2+b^2\right)\)Vì a^2+b^2=c^2+d^2=1

                      \(=\)\(abc^2+abd^2+a^2cd+b^2cd\)  

                      \(=ad\left(bd+ac\right)+bc\left(bd+ac\right)\)

                      \(=\left(ad+bc\right)\left(bd+ac\right)=0\left(đpcm\right)\)

10 tháng 8 2020

Theo đề bài, ta có: \(p^2+a^2=b^2\Rightarrow p^2=b^2-a^2=\left(b+a\right)\left(b-a\right)\)(1)

Vì p là số nguyên tố nên \(p^2\)có 3 ước là \(1;p;p^2\)(2)

Từ (1) và (2) suy ra có 3 khả năng có thể xảy ra là:

Khả năng 1: \(\hept{\begin{cases}b+a=1\\b-a=p^2\end{cases}}\). Điều này không thể xảy ra vì p > 3 nên \(p^2>9\Rightarrow b-a>9>1=b+a\Rightarrow-2a>0\)vô lí vì a nguyên dương

Khả năng 2: \(\hept{\begin{cases}b+a=p\\b-a=p\end{cases}}\Rightarrow b+a=b-a\Rightarrow2a=0\Rightarrow a=0\)(Loại vì a nguyên dương, không thể bằng 0)

Khả năng 3: \(\hept{\begin{cases}b+a=p^2\left(3\right)\\b-a=1\left(4\right)\end{cases}}\)

Lấy (3) - (4), ta được: \(2a=p^2-1=\left(p+1\right)\left(p-1\right)\)

Vì p là số nguyên tố lớn hơn 3 (*) nên p không chia hết cho 3 nên \(p^2\)chia 3 dư 1\(\Rightarrow p^2-1⋮3\)

\(\Rightarrow2a⋮3\)mà \(\left(2,3\right)=1\)nên \(a⋮3\)(**)

Từ (*) suy ra p lẻ nên \(p-1\)và \(p+1\)là hai số chẵn liên tiếp

Đặt \(p-1=2k\left(k\inℕ,k>1\right)\)thì \(p+1=2k+2\Rightarrow\left(p-1\right)\left(p+1\right)=4k\left(k+1\right)\)

Vì \(k\left(k+1\right)\)là tích của hai số nguyên liên tiếp nên \(k\left(k+1\right)⋮2\)suy ra \(4k\left(k+1\right)⋮8\)

hay \(2a⋮8\Rightarrow a⋮4\)(***)

Từ (**) và (***) suy ra \(a⋮12\)do \(\left(3,4\right)=1\)(đpcm)

Vì \(2a=p^2-1\Rightarrow2\left(p+a+1\right)\)       \(=2p+2a+2=2p+p^2-1+2=p^2+2p+1=\left(p+1\right)^2\)là số chính phương (đpcm)

14 tháng 8 2020

Ta có : a2 + b2 = c2

=> a2 + b2 - c2 = 0

=> a2 + b2 + 2ab - c2 = 2ab

=> (a + b)2 - c2 = 2ab

=> (a + b - c)(a + b + c) = 2ab

=> (a + b - c)/2 . (a + b + c) = ab

=> ab \(⋮\)a + b + c (đpcm)

14 tháng 8 2020

Bạn Xyz làm sai rồi nhé !!!!!

Chỗ:    \(\left(\frac{a+b-c}{2}\right)\left(a+b+c\right)=ab\)

Đoạn này để có:    \(ab⋮\left(a+b+c\right)\)     thì bạn phải lập luận     \(\frac{a+b-c}{2}\inℤ\)     đã nhé !!!!!! 

(NẾU BẠN SUY LUÔN RA     \(ab⋮\left(a+b+c\right)\)   LÀ SAI RỒI)

=> Cần phải chứng minh:     \(a+b-c⋮2\) 

Có: \(a^2+b^2=c^2\)

=> Nếu a chẵn; b chẵn thì c cũng chẵn        =>    \(a+b-c⋮2\) 

Nếu a chẵn; b lẻ thì c lẻ    =>   b - c chẵn     =>   \(a+b-c⋮2\)

Nếu a lẻ; b lẻ thì c chẵn    =>   a + b chẵn    =>   \(a+b-c⋮2\)

Nếu a lẻ; b chẵn thì c lẻ    =>   a - c chẵn     =>   \(a+b-c⋮2\)

VẬY QUA 4 TRƯỜNG HỢP THÌ TA =>   \(\frac{a+b-c}{2}\inℤ\)

Khi đó thì      \(ab⋮\left(a+b+c\right)\)

TA CÓ ĐPCM !!!!!