K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2021

c, thiếu đề rồi phải có tọa đọ B nữa chứ ? 

a, \(\left(2\sqrt{44}-3\sqrt{77}\right):\sqrt{11}+\sqrt{63}\)

\(=\frac{\left(4\sqrt{11}-3\sqrt{7}\sqrt{11}\right)}{\sqrt{11}}+3\sqrt{7}\)

\(=4-3\sqrt{7}+3\sqrt{7}=4\)

b,Ta có :  \(\left(\frac{1}{\sqrt{x}-3}-\frac{1}{\sqrt{x}+3}\right).\frac{x-9}{6}\)

\(=\frac{\sqrt{x}+3-\sqrt{x}+6}{x-9}.\frac{x-9}{6}=\frac{9}{6}=\frac{3}{2}\)

4 tháng 5 2021

sửa ý b, bấm nhầm 

\(\left(\frac{1}{\sqrt{x}-3}-\frac{1}{\sqrt{x}+3}\right).\frac{x-9}{6}\)

\(=\frac{\sqrt{x}+3-\sqrt{x}+3}{x-9}.\frac{x-9}{6}=\frac{6}{6}=1\)( đpcm )

25 tháng 7 2019

Câu 1:

a,Bạn tự vẽ

b,Phương trình hoành độ giao điểm của (d1) và (d2) là:

\(\(\(-2x+3=x-1\Rightarrow-3x=-4\Rightarrow x=\frac{4}{3}\)\)\)

\(\(\(\Rightarrow y=\frac{4}{3}-1=\frac{1}{3}\)\)\)

Vậy tọa độ giao điểm của (d1) và (d2) là \(\(\(\left(\frac{4}{3};\frac{1}{3}\right)\)\)\)

c,Đường thẳng (d3) có dạng: y = ax + b

Vì (d3) song song với (d1) \(\(\(\Rightarrow\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Rightarrow\hept{\begin{cases}a=-2\\b\ne3\end{cases}}\)\)\)

Khi đó (d3) có dạng: y = -2x + b

Vì (d3) đi qua điểm A( -2 ; 1) nên \(\(\(\Rightarrow x=-2;y=1\)\)\)

Thay x = -2 ; y = 1 vào (d3) ta được:\(\(\(1=-2.\left(-2\right)+b\Rightarrow b=-3\)\)\)

Vậy (d3) có phương trình: y = -2x - 3

Câu 2:

\(A=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}\left(a>0;b>0;a\ne b\right)\)(Đề chắc phải như này)

\(\(\(=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}.\frac{\sqrt{a}-\sqrt{b}}{1}\)\)\)

\(\(\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)\)\)

\(\(\(=\sqrt{a}^2-\sqrt{b}^2\)\)\)

\(\(\(=a-b\)\)\)

AH
Akai Haruma
Giáo viên
8 tháng 5 2018

Bài 1)

ĐK: \(x\geq 0; x\neq -4\)

Ta có:

\(A=\frac{1}{\sqrt{x}+2}+\frac{1}{2+\sqrt{x}}-\frac{2\sqrt{x}}{x+4}\)

\(=\frac{2}{\sqrt{x}+2}-\frac{2\sqrt{x}}{x+4}=2\left(\frac{1}{\sqrt{x}+2}-\frac{\sqrt{x}}{x+4}\right)\)

\(=2.\frac{x+4-x-2\sqrt{x}}{(\sqrt{x}+2)(x+4)}=2.\frac{4-2\sqrt{x}}{(\sqrt{x}+2)(x+4)}=\frac{4(2-\sqrt{x})}{(\sqrt{x}+2)(x+4)}\)

\(B=(\sqrt{2}+\sqrt{3}).\sqrt{2}-\sqrt{6}+\frac{\sqrt{333}}{\sqrt{111}}\)

\(=2+\sqrt{6}-\sqrt{6}+\frac{\sqrt{3}.\sqrt{111}}{\sqrt{111}}=2+\sqrt{3}\)

Để \(A=B\Leftrightarrow \frac{4(2-\sqrt{x})}{(\sqrt{x}+2)(x+4)}=2+\sqrt{3}\)

PT rất xấu. Mình nghĩ bạn đã chép sai biểu thức A.

AH
Akai Haruma
Giáo viên
8 tháng 5 2018

Bài 2 : Tọa độ điểm B ?

Bài 3:

Để pt có hai nghiệm thì \(\Delta'=(m-3)^2-(m^2-1)>0\)

\(\Leftrightarrow 10-6m>0\Leftrightarrow m< \frac{5}{3}\)

Áp dụng định lý Viete: \(\left\{\begin{matrix} x_1+x_2=2(m-3)\\ x_1x_2=m^2-1\end{matrix}\right.\)

Khi đó:

\(4=2x_1+x_2=x_1+(x_1+x_2)=x_1+2(m-3)\)

\(\Rightarrow x_1=10-2m\)

\(\Rightarrow x_2=2(m-3)-(10-2m)=4m-16\)

Suy ra: \(\Rightarrow x_1x_2=(10-2m)(4m-16)\)

\(\Leftrightarrow m^2-1=8(5-m)(m-4)\)

\(\Leftrightarrow m^2-1=8(-m^2+9m-20)\)

\(\Leftrightarrow 9m^2-72m+159=0\)

\(\Leftrightarrow (3m-12)^2+15=0\) (vô lý)

Vậy không tồn tại $m$ thỏa mãn điều kiện trên.

15 tháng 11 2020

4a) Sử dụng bất đẳng thức AM-GM ta có :

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\times\frac{y}{x}}=2\)

Đẳng thức xảy ra khi x = y > 0

29 tháng 7 2015

a = 2 ở đâu ra

Câu 1: Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\). Tính giá trị của biểu thức: \(P=\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ca}{b^2}\). Câu 2: Rút gọn: \(A=\frac{\sqrt{\sqrt[4]{8}+\sqrt{\sqrt{2}-1}}-\sqrt{\sqrt[4]{8}-\sqrt{\sqrt{2}-1}}}{\sqrt{\sqrt[4]{8}-\sqrt{\sqrt{2}+1}}}\) Câu 3: Cho đường tròn tâm O, đường kính AB = 2R; C là trung điểm của đoạn OA, D là một điểm của đường tròn sao cho BD = R. Đường trung trực của OA cắt AD tại E...
Đọc tiếp

Câu 1: Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\). Tính giá trị của biểu thức: \(P=\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ca}{b^2}\).

Câu 2: Rút gọn: \(A=\frac{\sqrt{\sqrt[4]{8}+\sqrt{\sqrt{2}-1}}-\sqrt{\sqrt[4]{8}-\sqrt{\sqrt{2}-1}}}{\sqrt{\sqrt[4]{8}-\sqrt{\sqrt{2}+1}}}\)

Câu 3: Cho đường tròn tâm O, đường kính AB = 2R; C là trung điểm của đoạn OA, D là một điểm của đường tròn sao cho BD = R. Đường trung trực của OA cắt AD tại E và BD tại F.

a) Tính các đoạn AE, CE và ED theo R.

b) Chứng tỏ rằng ΔADB và ΔFCB đồng dạng. Tính FB và FC theo R.

c) Chứng tỏ rằng BE vuông góc với AF.

d) Một điểm M di chuyển trên nửa đường tròn không chứa điểm D, tìm quỹ tích trung điểm I của đoạn DM.

Câu 4: Cho hàm số y = ax2 có đồ thị là (P)

a) Xác định a biết rằng (P) đi qua điểm A(-2; -1) và vẽ (P).

b) Gọi B là điểm trên (P) có hoành độ bằng 4. Viết phương trình đường thẳng AB.

c) Viết phương trình đường thẳng (D) tiếp xúc (P) và song song với AB.

Câu 5: Cho a, b, c là ba số dương thỏa a + b + c = 1. Chứng minh: \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\ge64\)

Câu 6: Trong một can có 16 lít xăng. Làm thế nào để chia số xăng đó thành hai phần bằng nhau, mỗi phần bằng nhau, mỗi phần 8 lít; nếu chỉ có thêm một can 11 lít và một can 6 lít để không?

Help me!!!

5
NV
12 tháng 8 2020

2.

Nhận xét: \(\sqrt[4]{8}+\sqrt{\sqrt{2}-1}>\sqrt[4]{8}-\sqrt{\sqrt{2}-1}\Rightarrow A>0\)

Ta có: \(A^2=\frac{\sqrt[4]{8}+\sqrt{\sqrt{2}-1}+\sqrt[4]{8}-\sqrt{\sqrt{2}-1}-2\sqrt{\sqrt{8}-\sqrt{2}+1}}{\sqrt[4]{8}-\sqrt{\sqrt{2}+1}}\)

\(=\frac{2\sqrt[4]{8}-2\sqrt{\sqrt{2}+1}}{\sqrt[4]{8}-\sqrt{\sqrt{2}+1}}=\frac{2\left(\sqrt[4]{8}-\sqrt{\sqrt{2}+1}\right)}{\sqrt[4]{8}-\sqrt{\sqrt{2}+1}}=2\)

\(\Rightarrow A=\sqrt{2}\)

NV
12 tháng 8 2020

4.

Thay tọa độ A vào pt (P) ta được:

\(-1=a.\left(-2\right)^2\Rightarrow a=-\frac{1}{4}\)

Phương trình (P): \(y=-\frac{1}{4}x^2\)

\(x_B=4\Rightarrow y_B=-\frac{1}{4}x_B^2=-4\Rightarrow B\left(4;-4\right)\)

Gọi phương trình AB có dạng \(y=ax+b\) , do A và B đều thuộc AB nên:

\(\left\{{}\begin{matrix}-2a+b=-1\\4a+b=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{1}{2}\\b=-2\end{matrix}\right.\) \(\Rightarrow y=-\frac{1}{2}x-2\)

Đường thẳng d song song AB nên pt có dạng: \(y=-\frac{1}{2}x+c\) với \(c\ne-2\)

Pt hoành độ giao điểm d và (P):

\(-\frac{1}{4}x^2=-\frac{1}{2}x+c\Leftrightarrow x^2-2x+4c=0\) (1)

d tiếp xúc (P) khi và chỉ khi (1) có nghiệm kép

\(\Leftrightarrow\Delta'=1-4c=0\Rightarrow c=\frac{1}{4}\)

\(\Rightarrow\left(d\right):y=-\frac{1}{2}x+\frac{1}{4}\)