Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+xy+x=4\)
\(\Leftrightarrow x\left(2+y\right)=4\)
Mà \(x,y\inℤ\Rightarrow2+y\inℤ\)
Do đó, \(x,2+y\) là các cặp ước của 4.
Ta có bảng sau :
\(x\) | -1 | 1 | 2 | -2 | 4 | -4 |
\(2+y\) | -4 | 4 | 2 | -2 | 1 | -1 |
\(y\) | -6 | 2 | 0 | -4 | -1 | -3 |
Đánh giá | Chọn | Chọn | Chọn | Chọn | Chọn | Chọn |
Vậy : \(\left(x,y\right)\in\left\{\left(-1,-6\right);\left(1,2\right);\left(2,0\right);\left(-2,-4\right);\left(4,-1\right);\left(-4,-3\right)\right\}\)
\(\Leftrightarrow\)x(1+y+1)=4
\(\Leftrightarrow\)x(2y)=4
\(\Rightarrow\)x(2y)\(\in\)Ư4 =1,4,2,-1,-2,-4
lâp bảng
x=1\(\Rightarrow\)y=2
x=2\(\Rightarrow\)y=1
x=4\(\Rightarrow\)y= không có giá trị nào
x=-1\(\Rightarrow\)y=-2
x=-2\(\Rightarrow\)y=-1
x=-4\(\Rightarrow\)y= không có giá trị nào
\(\frac{y}{3}-\frac{1}{x}=\frac{1}{3}\)
\(\Leftrightarrow\frac{xy}{3x}-\frac{3}{3x}=\frac{x}{3x}\)
\(\Leftrightarrow xy-3=x\)
\(\Leftrightarrow xy-x=3\)
\(\Leftrightarrow x\left(y-1\right)=3=\left(-1\right).\left(-3\right)=3.1\)( vì x, y là các số nguyên )
\(TH1:\)
\(\orbr{\begin{cases}x=1\\y-1=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\y=4\end{cases}}\)
\(\orbr{\begin{cases}x=3\\y-1=1\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\y=2\end{cases}}}\)
\(TH2:\)
\(\orbr{\begin{cases}x=-1\\y-1=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\y=-2\end{cases}}\)
\(\orbr{\begin{cases}x=-3\\y-1=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-3\\y=0\end{cases}}\)
Vậy .......
Giải: Có y/3-1/x=1/3
y/3-1/3=1/x
Suy ra y-1/3=1/x
Suy ra (y-1).x=3
Suy ra y-1 và x thuộc Ư(3)
Vì x,y thuộc Z
Do đó ta có bảng giá trị:
y-1 | 1 | 3 | -1 | -3 |
x | 3 | 1 | -3 | -1 |
y | 2 | 4 | 0 | -2 |
Vậy (x,y)= {...........}
nha
Ta có: (x-2) (xy-1) = 5
Suy ra: x-2; xy-1 thuộc Ư(5)={-1; 1; -5; 5}
Lập bảng:
x-2 | -1 | -5 | 1 | 5 |
x | 1 | -3 | 3 | 7 |
xy-1 | -5 | -1 | 5 | 1 |
y | -4 | 0 | 2 | 2/7 |
Vậy(x;y) = (1; -4) ; (-3 ; 0) ; (3 ; 2)
\(xy+2x+y=4\)
\(\Leftrightarrow x\left(y+2\right)+y+2=6\)
\(\Leftrightarrow\left(x+1\right)\left(y+2\right)=6\)
mà \(x,y\)nguyên nên \(x+1,y+2\)là các ước của \(6\).
Ta có bảng giá trị:
x+1 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
y+2 | -1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |
x | -7 | -4 | -3 | -2 | 0 | 1 | 2 | 5 |
y | -3 | -4 | -5 | -8 | 4 | 1 | 0 | -1 |
ta có : xy - x + 2y=3
=>x(y-1)+2(y-1)=1
=>(y-1)(x+2)=1
=>(y-1);(x+2)\(\in\)\(Ư_{\left(1\right)}\)
ta có bảng:
y-1 -1 1
x+2 -1 1
y 0 2
x -3 -1
Vậy (x;y) thỏa mãn là: (-3;0);(-1;2)
<=>x(x-y)+2(x-y)=1
<=(x+2)(x-y)=1
đến đó rùi phân tích ra tích của hai thừa số bằng 1 là tìm được x;y
a) ( x-2) ( y+1) =7
=> x-2 \(\in\)Ư(7)= { 1,7}
Nếu x-2 = 1 => x= 1+2 => x= 3
Nếu x-2= 7 => x= 7+2 => x= 9
Nếu x= 3 thì ( x-2) ( y+1) = ( 3-2)(y+1)=7
=> y+1 =7 => y= 7-1 => y = 6
Nếu x = 9 thì ( x- 2 )( y+1)= 7 => ( 9-2) ( y+1) =7
=> 7( y+1) =7 => y+1= 7:7 => y+1 = 1 => y= 1-1 => y=0
Vậy...
Trình bày có chỗ nào sao mong mn sửa hộ nhaaa