\(\frac{\sqrt{x}-1}{x-\sqrt{x}+1}+\frac{1+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)kết quả rút gọn =\(\frac{3-\sqrt{x}}{x\sqrt{x}-1}\)

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

13 tháng 9 2016

a/ Ta có

P = \(\frac{1+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) - \(\frac{2+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\) - \(\frac{1+\sqrt{x}}{x+\sqrt{x}+1}\)

\(\frac{-\sqrt{x}}{1+\sqrt{x}+x}\)

14 tháng 9 2016

mình muốn hỏi câu b cơ bạn ơi

8 tháng 3 2021

a, Ta có : \(A=\frac{\sqrt[]{x}-2}{x+\sqrt{x}+1};x=16\Rightarrow\sqrt{x}=4\)

\(A=\frac{4-2}{16+4+1}=\frac{2}{21}\)

b, Với \(x\ge0;x\ne1\)ta có : 

\(B=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt[]{x}}\)

\(=\frac{x+2}{\left(\sqrt{x}\right)^2-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)

\(=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

7 tháng 7 2021

\(a,B=\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)}{1-xy}\right):\left(\frac{1-xy+x+y+2xy}{1-xy}\right)\)

\(B=\frac{\sqrt{x}+\sqrt{y}+x\sqrt{y}+y\sqrt{x}+\sqrt{x}-\sqrt{y}-x\sqrt{y}+y\sqrt{x}}{1-xy}.\frac{1-xy}{1+xy+x+y}\)

\(B=\frac{2\sqrt{x}+2y\sqrt{x}}{x\left(y+1\right)+\left(y+1\right)}\)

\(B=\frac{2\sqrt{x}\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}\)

\(B=\frac{2\sqrt{x}}{x+1}\)

\(b,B=\frac{2\sqrt{\frac{2}{2+\sqrt{3}}}}{\frac{2}{2+\sqrt{3}}+1}\)

\(\frac{2\sqrt{\frac{4}{4+2\sqrt{3}}}}{\frac{4}{4+2\sqrt{3}}+1}\)

\(B=\frac{2\sqrt{\frac{4}{\left(\sqrt{3}+1\right)^2}}}{\frac{4}{\left(\sqrt{3}+1\right)^2}+1}\)

\(B=\frac{2.2}{\sqrt{3}+1}:\frac{4+2\sqrt{3}}{\sqrt{3}+1}\)

\(B=\frac{4}{\left(\sqrt{3}+1\right)^2}\)

\(B=\left(\frac{2}{\sqrt{3}+1}\right)^2\)

\(c,B=\frac{2\sqrt{x}}{x+1}\)

\(B=\frac{2}{\sqrt{x}+\frac{1}{\sqrt{x}}}\)

ta có :

\(\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}=2\)

dấu "=" xảy ra khi \(x=1\)

\(< =>MAX:B=\frac{2}{2}=1\)

7 tháng 7 2021

Đk: x \(\ge\)0; y \(\ge\)0; xy \(\ne\)1

Ta có: B = \(\left(\frac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\frac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\right):\left(1+\frac{x+y+2xy}{1-xy}\right)\)

B = \(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{xy}+1\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}:\frac{1-xy+x+y+2xy}{1-xy}\)

B = \(\frac{x\sqrt{y}+\sqrt{y}+y\sqrt{x}+\sqrt{x}+\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}}{1-xy}\cdot\frac{1-xy}{x+y+xy+1}\)

B = \(\frac{2\sqrt{x}+2y\sqrt{x}}{\left(y+1\right)\left(x+1\right)}=\frac{2\sqrt{x}\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}=\frac{2\sqrt{x}}{x+1}\)

b) Ta có: \(x=\frac{2}{2+\sqrt{3}}=\frac{2\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\frac{4-2\sqrt{3}}{4-3}=4-2\sqrt{3}\)

=> \(x=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)=> \(\sqrt{x}=\sqrt{3}-1\)

Do đó, B = \(\frac{2.\left(\sqrt{3}-1\right)}{4-2\sqrt{3}+1}=\frac{2\sqrt{3}-2}{5-2\sqrt{3}}=\frac{\left(2\sqrt{3}-2\right)\left(5+2\sqrt{3}\right)}{\left(5-2\sqrt{3}\right)\left(5+2\sqrt{3}\right)}=\frac{10\sqrt{3}+12-10-4\sqrt{3}}{25-12}\)

B = \(\frac{6\sqrt{3}+2}{13}\)

c) Ta có: \(\frac{1}{B}=\frac{x+1}{2\sqrt{x}}=\frac{\sqrt{x}}{2}+\frac{1}{2\sqrt{x}}\ge2\cdot\sqrt{\frac{\sqrt{x}}{2}\cdot\frac{1}{2\sqrt{x}}}=2\cdot\sqrt{\frac{1}{4}}=1\)(đk: x \(\ne\)0)

=> \(B\le\frac{1}{1}=1\)Dấu "==" xảy ra<=> \(\frac{\sqrt{x}}{2}=\frac{1}{2\sqrt{x}}\) => \(2\sqrt{x}=2\) => \(x=1\)

Đề sai rồi bạn