Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Có: \(\widehat{xOy}=\widehat{xAz}=70^o\)
mà hai góc này nằm ở vị trí đồng vị
=> Az // Oy
b) Có \(\widehat{xAz}+\widehat{OAz}=180^o\Rightarrow\widehat{OAz}=180^o-70^o=110^o\)
=> \(\widehat{OAz}=\widehat{CBz}=110^o\)
mà hai góc này nằm ở vị trí đồng vị
=> \(Ox//BC\) hay Bt // Ox
c) Vì Ox // Bt
=> \(\widehat{AOC}+\widehat{OCB}=180^o\)(hai góc trong cùng phía )
=> \(\widehat{OCB}=180^o-\widehat{COA}=180^o-70^o=110^o\)
d) Có \(CK\perp\) Az ; Az //Oy
=> \(CK\perp\) Oy mà \(AH\perp Oy\Rightarrow AH//CK\)
![](https://rs.olm.vn/images/avt/0.png?1311)
câu 1
a) xét tam giác OAM và tam giác OBM có:
OB=OA(gt)
góc BOM= góc MOA(Ot là tia phân giác của góc xOy)
OM:cạnh chung
⇒tam giác OAM= tam giác OBM(c.g.c)
b)vì tam giác OAM= tam giác OBM(câu a)
⇒AM=BM(2 cạnh tương ứng)
⇒góc OMB= góc OMA(2 góc tương ứng)
Mà hóc OMB+góc OMA=180o(kề bù)
⇒góc OMB=góc OMA=180o:2=90o
⇒OM vuông góc với AB
c)vì MA=MB(câu b)
Mà OM vuông góc với AB(câu b)
⇒OM là đường trung trực của AB
d)xét tam giác NBM và tam giác NAM có
AM=BM(câu b)
góc BMN= góc AMN(=90o)
MN:cạnh chung
⇒tam giác NBM= tam giác NAM(c.g.c)
⇒NA=NB(2 cạnh tướng ứng)
a) Xét \(\Delta AOC\) và \(\Delta BOD\) có:
\(\widehat{ACO}=\widehat{BDO}=90^o;\widehat{AOB}:chung;OA=OB\)
\(\Rightarrow\) \(\Delta AOC\) = \(\Delta BOD\) \(\Rightarrow\) \(\widehat{OAC}=\widehat{OBD}\)
b) Xét \(\Delta OAB\) có : OA = OB \(\Rightarrow\) \(\Delta OAB\) cân tại O
\(\Rightarrow\) \(\widehat{OAB}=\widehat{OBA}\)
Có \(\widehat{OAC}+\) \(\widehat{CAB}=\widehat{OAB}\) ; \(\widehat{OBD}+\widehat{DBA}=\widehat{OBA}\)
mà \(\widehat{OAB}=\widehat{OBA}\) ; \(\widehat{OAC}=\widehat{OBD}\)
\(\Rightarrow\widehat{CAB}=\widehat{DBA}\Rightarrow\Delta IAB\) cân tại I
\(\Rightarrow IA=IB\)
c) Xét \(\Delta IBC\) vuông tại C
=> IB > IC mà IB = IA
=> IA > IC
Cho góc nhọn xOy.Trên tia Ox lấy điểm A (A \(\ne\) O); trên tia Oy lấy điểm B
(B khác O) sao cho OA = OB. Kẻ AC ⊥ Oy (C ∈ Oy); BD⊥Ox (D ∈ Ox).Gọi I là giao điểm của AC và BD.
a. Chứng minh \(\Delta\) AOC = \(\Delta\) BOD
b. Chứng minh \(\Delta\) AIB cân
c. So sánh IC và IA