Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3x\left(x-4y\right)-\frac{12}{5}y\left(y-5x\right)=3x^2-12xy-\frac{12}{5}y^2+12xy=3x^2-\frac{12}{5}y^2\)
b) \(\left(4x^2-3y\right)\cdot2y-\left(3x^2-4y\right)\cdot3y\)
\(=8x^2y-6y^2-9x^2y+12y^2=-x^2y+6y^2\)
a: \(\dfrac{-6x^3y^4+4x^4y^3}{2x^3y^3}\)
\(=\dfrac{-6x^3y^4}{2x^3y^3}+\dfrac{4x^4y^3}{2x^3y^3}\)
\(=-3y+2x\)
b: \(\dfrac{5x^4y^2-x^3y^2}{x^3y^2}=\dfrac{5x^4y^2}{x^3y^2}-\dfrac{x^3y^2}{x^3y^2}\)
\(=5x-1\)
c: \(\dfrac{27x^3y^5+9x^2y^4-6x^3y^3}{-3x^2y^3}\)
\(=-\dfrac{27x^3y^5}{3x^2y^3}-\dfrac{9x^2y^4}{3x^2y^3}+\dfrac{6x^3y^3}{3x^2y^3}\)
\(=-9xy^2-3y+2x\)
a) \(\dfrac{-6x^3y^4+4x^4y^3}{2x^3y^3}\)
\(=\dfrac{2x^3y^3\cdot\left(-3y+2x\right)}{2x^3y^3}\)
\(=-3y+2x\)
\(=2x-3y\)
b) \(\dfrac{5x^4y^2-x^3y^2}{x^3y^2}\)
\(=\dfrac{5x\cdot x^3y^2-x^3y^2\cdot1}{x^3y^2}\)
\(=\dfrac{x^3y^2\cdot\left(5x-1\right)}{x^3y^2}\)
\(=5x-1\)
c) \(\dfrac{27x^3y^5+9x^2y^4-6x^3y^3}{-3x^2y^3}\)
\(=\dfrac{-3x^2y^3\cdot-9xy^2+-3x^2y^3\cdot-3y+-3x^2y^3\cdot2x}{-3x^2y^3}\)
\(=\dfrac{-3x^2y^3\cdot\left(-9xy^2-3y+2x\right)}{-3x^2y^3}\)
\(=-9xy^2-3x+2x\)
- \(Q=x^2+2y^2-3x-4y+10\)
\(=\left(x^2-3x+\frac{9}{4}\right)+2\left(y^2-2y+1\right)+10-\frac{9}{4}-2\)
\(=\left(x-\frac{3}{2}\right)^2+2\left(y-1\right)^2+\frac{23}{4}\ge\frac{23}{4}\)
Dấu "=" xảy ra khi \(\begin{cases}\left(x-\frac{3}{2}\right)^2=0\\\left(y-1\right)^2=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=\frac{3}{2}\\y=1\end{cases}\)
Vậy Min Q = \(\frac{23}{4}\) tại (x;y) = (\(\frac{3}{2};1\))
- E đề ghi không rõ ...
\(B=\left(5x-4y\right)^2-\left(6x+4y\right)\left(5x-4y\right)+\left(3x+2y\right)^2\)
\(B=\left(5x-4y\right)\left(5x-4y-6x-4y\right)+\left(3x+2y\right)^2\)
\(B=\left(5x-4y\right)\left(-x-8y\right)+\left(3x+2y\right)^2\)
\(B=-5x^2-40xy+4xy+32y^2+9x^2+12xy+4y^2\)
\(B=4x^2-24xy+36y^2\)
\(B=x^2-6xy+6y^2\)
Bài chưa đc ktra lại đâu . Có gì sai sót thì bỏ qua