K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2022

a.\(\sqrt{\left(\sqrt{7}-1\right)^2}=\left|\sqrt{7}-1\right|=\sqrt{7}-1\)

b.\(\sqrt{\left(2-\sqrt{3}\right)^2}=\left|2-\sqrt{3}\right|=2-\sqrt{3}\)

c.\(\sqrt{\left(\sqrt{2}+5\right)^2}-\sqrt{2}=\left|\sqrt{2}+5\right|-\sqrt{2}=\sqrt{2}+5-\sqrt{2}=5\)

d.\(\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-6\right)^2}=\left|3+\sqrt{5}\right|+\left|\sqrt{5}-6\right|=3+\sqrt{5}+6-\sqrt{5}=9\)

13 tháng 5 2022

a)\(=\sqrt{7}-1\)

b)\(=2-\sqrt{3}\)

c)\(=\sqrt{2}+5-\sqrt{2}=5\)

d)\(=3+\sqrt{5}+\sqrt{5}+6=9\)

20 tháng 7 2017

a) \(\sqrt{(3-2\sqrt{2})^2}+\sqrt{(3+2\sqrt{2})^2}=3-2\sqrt{2}+3-2\sqrt{2}=6\)

b\(\sqrt{(5-2\sqrt{6})^2}+\sqrt{(5+2\sqrt{6})^2}=5-2\sqrt{6}+5+2\sqrt{6}=10 \)

các ý còn lại làm tương tự

20 tháng 7 2017

hình như ở câu a) chỗ sau dấu bằng đầu tiên bạn bị sai dấu trừ cuối cùng

a) Ta có: \(\left(\sqrt{6}+\sqrt{2}\right)\cdot\left(\sqrt{3}-2\right)\cdot\left(\sqrt{2+\sqrt{3}}\right)\)

\(=\sqrt{2}\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\cdot\sqrt{2+\sqrt{3}}\)

\(=\sqrt{4+2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)

\(=\sqrt{3+2\cdot\sqrt{3}\cdot1+1}\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)

\(=\left|\sqrt{3}+1\right|\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)

\(=\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)(Vì \(\sqrt{3}>1>0\))

\(=\left(4+2\sqrt{3}\right)\cdot\left(\sqrt{3}-2\right)\)

\(=2\cdot\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)\)

\(=2\cdot\left(3-4\right)\)

\(=-2\)

b) Ta có: \(\sqrt{2}\cdot\left(\sqrt{2-\sqrt{3}}\right)\cdot\left(\sqrt{3}+1\right)\)

\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)

\(=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\cdot\left(\sqrt{3}+1\right)\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}\cdot\left(\sqrt{3}+1\right)\)

\(=\left|\sqrt{3}-1\right|\cdot\left(\sqrt{3}+1\right)\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)(Vì \(\sqrt{3}>1\))

\(=3-1=2\)

c) Ta có: \(\left(\sqrt{10}-\sqrt{6}\right)\cdot\left(\sqrt{4-\sqrt{15}}\right)\)

\(=\sqrt{2}\cdot\sqrt{4-\sqrt{15}}\cdot\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\sqrt{8-2\sqrt{15}}\cdot\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\cdot\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\cdot\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left|\sqrt{5}-\sqrt{3}\right|\cdot\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)(Vì \(\sqrt{5}>\sqrt{3}\))

\(=8-2\sqrt{15}\)

d) Ta có: \(\left(\sqrt{3}-\sqrt{12}\right)\cdot\left(\sqrt{5+2\sqrt{6}}\right)\)

\(=\sqrt{3}\cdot\left(1-2\right)\cdot\sqrt{3+2\cdot\sqrt{3}\cdot\sqrt{2}+2}\)

\(=-\sqrt{3}\cdot\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)

\(=-\sqrt{3}\cdot\left|\sqrt{3}+\sqrt{2}\right|\)

\(=-\sqrt{3}\cdot\left(\sqrt{3}+\sqrt{2}\right)\)(Vì \(\sqrt{3}>\sqrt{2}>0\))

\(=-3-\sqrt{6}\)

e) Ta có: \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}-\sqrt{2}\right)\cdot\left(2+\sqrt{3}\right)\)

\(=\sqrt{2}\cdot\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{3}-1\right)\cdot\left(2+\sqrt{3}\right)\)

\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+2\right)\)

\(=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\cdot\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+2\right)\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}\cdot\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+2\right)\)

\(=\left|\sqrt{3}-1\right|\cdot\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+2\right)\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)\left(\sqrt{3}+2\right)\)(Vì \(\sqrt{3}>1\))

\(=\frac{\left(4-2\sqrt{3}\right)\left(4+2\sqrt{3}\right)}{2}\)

\(=\frac{16-12}{2}=\frac{4}{2}=2\)

f) Ta có: \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{4+2\cdot2\cdot\sqrt{3}+3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left|2+\sqrt{3}\right|}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)(Vì \(2>\sqrt{3}>0\))

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{25-2\cdot5\cdot\sqrt{3}+3}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\left|5-\sqrt{3}\right|}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}\)(Vì \(5>\sqrt{3}\))

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+\sqrt{25}}\)

\(=\sqrt{4+5}=\sqrt{9}=3\)

4 tháng 7 2018

\(1.A=\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)=5-4=1\)

\(2.B=\left(\sqrt{45}+\sqrt{63}\right)\left(\sqrt{7}-\sqrt{5}\right)=\left(3\sqrt{5}+3\sqrt{7}\right)\left(\sqrt{7}-\sqrt{5}\right)=2\left(7-5\right)=4\) \(3.C=\left(\sqrt{5}+\sqrt{3}\right)\left(5-\sqrt{15}\right)=\sqrt{5}\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=\sqrt{5}\left(5-3\right)=2\sqrt{5}\) \(4.\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)=\left(4\sqrt{2}-5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{3}+5\sqrt{2}-4\sqrt{2}\right)=\left(3\sqrt{3}-\sqrt{2}\right)\left(3\sqrt{3}+\sqrt{2}\right)=27-2=25\) \(5.E=\left(\sqrt{3}+1\right)^2-2\sqrt{3}+4=4+2\sqrt{3}-2\sqrt{3}+4=8\)

\(6.F=\left(\sqrt{15}-2\sqrt{3}\right)^2+12\sqrt{5}=27-12\sqrt{5}+12\sqrt{5}=27\)

3 tháng 9 2019

a) \(\sqrt{3^2}-\sqrt{7^2}+\sqrt{\left(-1\right)^2}=|3|-|7|+|-1|=3-7+1=-3\)

b) \(-2\sqrt{\left(-2\right)^2}+\sqrt{\left(-5\right)^2}+\sqrt{3^2}=-2|2|+|-5|+\left|3\right|=-4+5+3=4\)

c) \(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}=\left|2-\sqrt{2}\right|+\left|2+\sqrt{2}\right|=2-\sqrt{2}+2+\sqrt{2}=4\)

d) \(\sqrt{\left(3\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}=\left|3\sqrt{2}\right|-\left|1-\sqrt{2}\right|=3\sqrt{2}-\sqrt{2}+1=2\sqrt{2}+1\)

e) \(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(\sqrt{2}+1\right)^2}=\left|\sqrt{2}-1\right|+\left|\sqrt{2}+1\right|=\sqrt{2}-1+\sqrt{2}+1=2\sqrt{2}\)

f) \(\sqrt{9-4\sqrt{5}}+\sqrt{9+4\sqrt{5}}=\sqrt{\left(\sqrt{5}-2\right)^2}+\sqrt{\left(\sqrt{5}+2\right)^2}=\left|\sqrt{5}-2\right|+\left|\sqrt{5}+2\right|=\sqrt{5}-2+\sqrt{5}+2=2\sqrt{5}\)

g) \(\sqrt{9-4\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{9-2\sqrt{8}}+\sqrt{2-2\sqrt{2}.3+9}=\sqrt{\left(\sqrt{8}-1\right)^2}+\sqrt{\left(\sqrt{2}-3\right)^2}=\sqrt{8}-1+3-\sqrt{2}=2-\sqrt{2}+\sqrt{8}\)

h) \(\sqrt{12+8\sqrt{2}}+\sqrt{6-4\sqrt{2}}=\sqrt{12+2\sqrt{4}\sqrt{8}}+\sqrt{6-2\sqrt{2}\sqrt{4}}=\sqrt{\left(\sqrt{4}+\sqrt{8}\right)^2}+\sqrt{\left(\sqrt{4}-\sqrt{2}\right)^2}=\sqrt{4}+\sqrt{8}+\sqrt{4}-\sqrt{2}\)

k) \(\left(2-\sqrt{3}\right)\sqrt{7+4\sqrt{3}}=\left(2-\sqrt{3}\right)\sqrt{\left(\sqrt{3}+2\right)^2}=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3=1\)

22 tháng 7 2018

a) \(\left(\sqrt{8}+\sqrt{72}-\sqrt{2}\right).\sqrt{2}\)

\(=\left(2\sqrt{2}+6\sqrt{2}-\sqrt{2}\right).\sqrt{2}\)

\(=7\sqrt{2}.\sqrt{2}=7.2=14\)

b) \(\left(\sqrt{5}+\sqrt{2}+1\right)\left(\sqrt{5}-1\right)\)

\(=5-\sqrt{5}+\sqrt{10}-\sqrt{2}+\sqrt{5}-1\)

\(=4+\sqrt{10}-\sqrt{2}\)

c) \(\left(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\right)^2\)

\(=\left(\sqrt{4+\sqrt{7}}\right)^2-2\sqrt{4+\sqrt{7}}\sqrt{4-\sqrt{7}}+\left(\sqrt{4-\sqrt{7}}\right)^2\)

\(=\left(4+\sqrt{7}\right)-6+\left(4-\sqrt{7}\right)\)

\(=4+\sqrt{7}-6+4-\sqrt{7}=2\)

d) \(\left(\sqrt{2}+1+\sqrt{3}\right).\left(\sqrt{2}+1-\sqrt{3}\right)\)

\(=\left(\sqrt{2}+1\right)^2-3=2+2\sqrt{2}+1-3=2\sqrt{2}\)

e) \(\left(\sqrt{\frac{9}{2}}+\sqrt{\frac{1}{2}}-\sqrt{2}\right).\sqrt{2}\)

\(=3+1-2=2\)(nhân vào)

f) \(\left(5\sqrt{3}+3\sqrt{5}\right):\sqrt{15}\)

\(=\left(\sqrt{75}+\sqrt{45}\right):\sqrt{15}=\sqrt{5}+\sqrt{3}\)(chia đa tức cho đơn thức)

có sai xót mong m.n bỏ qa cho ♥

23 tháng 9 2018

7469 + x x 54 = 33137

27 tháng 6 2019

a) \(\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}=\sqrt{2}+\sqrt{3}\)

b) \(\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)

c) \(\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}-\sqrt{3}+\sqrt{5}+\sqrt{3}\)\(=2\sqrt{5}\)

27 tháng 6 2019

d) \(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}=\sqrt{2}-\sqrt{3}-1-\sqrt{3}\)

\(=\sqrt{12}-\sqrt{2}-1\)

e) \(\sqrt{\left(\sqrt{3-1}^2\right)-\sqrt{3}}=\sqrt{\sqrt{2}^2-\sqrt{3}}=\sqrt{2-\sqrt{3}}\)

P/S: Ko chắc