K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2018

a, Số số hạng của dãy số là 9(số);

=> Tổng của dãy số là (9+1)*9/2=45

b,Số số hạng của dãy số là 50 số 

=> Tổng của dãy số là (50+1)*50/2=1275

c, Số số hạng của dãy số là (99-1)/2+1=50 số 

=> Tổng của dãy số là (99+1)*50/2= 2500

14 tháng 6 2018

câu d sai đề

24 tháng 3 2021

a) cos199 số

b) có 100 số

24 tháng 3 2021

a) 199 so hang

b) 100 so hang

15 tháng 10 2017

Xin hãy giúp mình

18 tháng 3 2021

a,=3/2*4/3*....100/99

=3*4*5*....*100/2*3*...*99

=100/2=50

b, nhân lên băng:

1*2*3*...*99/2*3*...*100=1/100

16 tháng 8 2018

Dãy số tự nhiên từ 1 đến 100 có số các số hạng là:

(100 - 1) : 1 + 1 = 100 (số)

100 số tạo thành số cặp là:

100 : 2 = 50 (cặp)

Ta có: 1 + 2 + 3 + 4 + 5 +....... + 96 + 97 + 98 + 99 + 100

= (1 + 100) + (2 + 99) + (3 + 98) + (4 + 97) + (5 + 96) +.....

= 101 + 101 + 101 + 101 +101 +......

= 101 x 50 = 5050

số số hạng là:(100-1):1+1=100ssh

tổng là:(100+1)*100:2=đến đây bạn tự làm

19 tháng 7 2023

\(A=\dfrac{1+3+5+7+...+99}{50}\) 

Số lượng số hạng của tổng là:

\(\left(99-1\right):2+1=50\) 

Giá trị của A là:

\(A=\dfrac{\left(99+1\right)\cdot50:2}{50}=50\)

_____________________

\(B=\dfrac{2+4+6+..+98}{49}\)

Số lượng số hạng của tổng:

\(\left(98-2\right):2+1=49\) (số hạng)

Giá trị của B là:

\(B=\dfrac{\left(98+2\right)\cdot49:2}{49}=50\)

Vậy: A = B

2 tháng 6 2018

a) \(A=98+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào mỗi phân số)

\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{99}+1\right)\)

\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)

Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}=1\)

b) \(A=2018+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\)(có 2018 phân số nên ta cộng 1 vào mỗi phân số)

\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{2019}+1\right)\)

\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)

Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}=1\)

c) \(A=\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}\)

\(A=99+\frac{98}{2}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào từng phân số)

\(A=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)

\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+1\)

\(A=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)

Và \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\)

\(\Rightarrow\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}}=100\)

2 tháng 6 2018

a)\(B=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+...+\frac{100}{99}\)

\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{99}\right)\)

\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\right)\)

\(\Rightarrow B=98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\)

\(\Rightarrow A:B=\frac{A}{B}=\frac{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}=1.\)

Vậy \(A:B=1.\)

b)\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{2019}\right)\)

\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right)\)

\(\Rightarrow B=2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)

\(\Rightarrow A:B=\frac{A}{B}=\frac{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}=1.\)

Vậy \(A:B=1.\)

c)\(A=\left(1+1+...+1\right)+\frac{98}{2}+\frac{97}{3}+...+\frac{2}{98}+\frac{1}{99}\)

\(A=\left(1+\frac{98}{2}\right)+\left(1+\frac{97}{3}\right)+...+\left(1+\frac{2}{98}\right)+\left(1+\frac{1}{99}\right)\)

\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}\)

\(A=100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)\)

\(\Rightarrow A:B=\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}}=1.\)

Vậy \(A:B=1.\)

22 tháng 8 2015

 số số hạng là :

          (100 - 1)  + 1=100 (số)

 Tổng là :

          ( 100 + 1 )x 100 : 2 = 5050 

23 tháng 1 2017

tổng trên bằng:

1-3+2-4+...+97-99+98-100=-2+-2+...+-2+-2

=(-2)x50=-100

23 tháng 1 2017

        \(1+2-3-4+...+97+98-99-100\)

\(=\left(1+2-3-4\right)+...+\left(97+98-99-100\right)\)

\(=\left(-4\right)+...+\left(-4\right)\)               Vì dãy số trên có 100 số hạng => Dãy số trên có 25 cặp -4.

\(=\left(-4\right).25\)

\(=-100\)

Tk mk nhé!