Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,3x-24y=3\left(x-8y\right)\)
\(2,6x^3y^2-12x^2y^2-3x^2y=3x^2y\left(2xy-4y-1\right)\)
\(3,7x\left(x-2\right)-8\left(x-2\right)=\left(x-2\right)\left(7x-8\right)\)
...(tương tự)
\(10,5x-5y+x^2-xy=5\left(x-y\right)+x\left(x-y\right)=\left(x-y\right)\left(x+5\right)\)
\(11,x^2+2xy+y^2-16=\left(x+y\right)^2-16=\left(x+y-4\right)\left(x+y+4\right)\)
b) x8 +7x4+16
= x8+8x4-x4+16
= (x8+8x4+16) - x4
=(x4+4)2-x4
= (x4+4+x2)(x4+4-x2)
c) x5+x-1
= x5 - x4+x3+x4-x3+x2-x2+x-1
= x3(x2-x+1) + x2(x2-x+1) - (x2-x+1)
= (x2-x+1)(x3+x2 -1)
d)x7+x2+1
=x7-x+x2 +x+1
= x (x6-1) + (x2+x+1)
= x(x3-1)(x3+1) + (x2+x+1)
= x(x3+1)(x-1)(x2+x+1)+(x2+x+1)
= (x2+x+1)[x(x3+1)(x-1) +1]
= (x2+x+1)(x5-x4+x2-x+1)
= x (x-1)(x2+x+1)
e) x5+x4+1
= x5+x4+x3 - x3+1
= x3(x2+x+1) - (x-1)(x2+x+1)
= (x2+x+1)(x3-x+1)
f) x8+x+1
= x8-x2+x2+x+1
= x2(x6-1)+(x2+x+1)
= x2(x3-1)(x3+1) +(x2+x+1)
= (x5+x2)(x-1)(x2+x+1) +(x2+x+1)
= (x2+x+1)(x6-x5+x3-x2+1)
Bài 1:
a: \(6x^2-11x+3\)
\(=6x^2-9x-2x+3\)
\(=3x\left(2x-3\right)-\left(2x-3\right)\)
\(=\left(2x-3\right)\left(3x-1\right)\)
b: \(2x^2+3x-27\)
\(=2x^2+9x-6x-27\)
\(=x\left(2x+9\right)-3\left(2x+9\right)\)
\(=\left(2x+9\right)\left(x-3\right)\)
c: \(x^2-10x+24\)
\(=x^2-4x-6x+24\)
\(=x\left(x-4\right)-6\left(x-4\right)\)
\(=\left(x-4\right)\left(x-6\right)\)
d: \(49x^2+28x-5\)
\(=49x^2+28x+4-9\)
\(=\left(7x+2\right)^2-9\)
\(=\left(7x-1\right)\left(7x+5\right)\)
e: \(2x^2-5xy-3y^2\)
\(=2x^2-6xy+xy-3y^2\)
\(=2x\left(x-3y\right)+y\left(x-3y\right)\)
\(=\left(x-3y\right)\left(2x+y\right)\)
Bài 1:
a) \(x^2-y^2+10x+25\)
\(=\left(x^2+10x+25\right)-y^2\)
\(=\left(x+5\right)^2-y^2\)
\(=\left(x+y+5\right)\left(x-y+5\right)\)
b) \(x^3-x^2-5x+125\)
\(=x^3+5x^2-6x^2-30x+25x+125\)
\(=x^2\left(x+5\right)-6x\left(x+5\right)+25\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
c) \(x^4+4y^4\)
\(=\left(x^2\right)^2+2x^22y^2+\left(2y^2\right)^2-2x^22y^2\)
\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2+2y^2-2xy\right)\left(x^2+2y^2+2xy\right)\)
d)Sửa đề \(a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)
\(=a\left(b^2-c^2\right)-b\left[\left(b^2-c^2\right)+\left(a^2-b^2\right)\right]+c\left(a^2-b^2\right)\)
\(=a\left(b^2-c^2\right)-b\left(b^2-c^2\right)-b\left(a^2-b^2\right)+c\left(a^2-b^2\right)\)
\(=\left(a-b\right)\left(b^2-c^2\right)-\left(b-c\right)\left(a^2-b^2\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(b+c\right)-\left(b-c\right)\left(a-b\right)\left(a+b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(b+c-a-b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
e) \(7x^2-10xy+3y^2\)
\(=\left(\sqrt{7}x\right)^2-2.\sqrt{7}x.\sqrt{3}y+\left(\sqrt{3}y\right)^2\)
\(=\left(\sqrt{7}x-\sqrt{3}y\right)^2\)
f) Sửa đề \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc+2ab-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)\)
h) \(xy\left(x+y\right)-yz\left(y+z\right)+xz\left(x-z\right)\)
\(=x^2y+xy^2-y^2z-yz^2+x^2z-xz^2\)
\(=\left(x^2y+x^2z\right)+\left(xy^2-xz^2\right)-yz\left(y+z\right)\)
\(=x^2\left(y+z\right)+x\left(y^2-z^2\right)-yz\left(y+z\right)\)
\(=x^2\left(y+z\right)+x\left(y+z\right)\left(y-z\right)-yz\left(y+z\right)\)
\(=\left(y+z\right)\left[x^2+x\left(y-z\right)-yz\right]\)
\(=\left(y+z\right)\left(x^2+xy-xz-yz\right)\)
\(=\left(y+z\right)\left[x\left(x+y\right)-z\left(x+y\right)\right]\)
\(=\left(y+z\right)\left(x+y\right)\left(x-z\right)\)
a,\(xy+3x-7y-21\)
\(=x\left(y+3\right)-7\left(y+3\right)\)
\(=\left(y+3\right)\left(x-7\right)\)
\(b,2xy-15-6x+5y\)
\(=\left(2xy-6x\right)+\left(-15+5y\right)\)
\(=2x\left(y-3\right)-5\left(3-y\right)\)
\(=2x\left(y-3\right)+5\left(y-3\right)\)
\(=\left(y-3\right)\left(2x+5\right)\)
\(A=4x^2-2\left(y+2,5x^2\right)+x^2-4y\)
\(=4x^2-2y-5x^2+x^2-4y=-6y\)
\(B=\left(x+y\right).\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-\left(x^5+y^5-8\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5-x^5-y^5+8\)
\(=8\)
Vậy BT B ko phụ thuộc vào biến
câu sau tương tự
\(5x\left(x+1\right)-3\left(x-5\right)+4\left(3x-6\right)=2x^2-7\)
\(\Rightarrow5x^2+5x-3x+15+12x-24=2x^2-7\)
\(\Rightarrow5x^2+14x-9=2x^2-7\Rightarrow5x^2+14x-9-2x^2+7=0\)
\(\Rightarrow3x^2+14x-2=0\)
\(\Rightarrow3\left(x^2+\frac{14}{3}x-\frac{2}{3}\right)=0\Rightarrow x^2+2.x.\frac{7}{3}+\frac{49}{9}-\frac{55}{9}=0\)
\(\Rightarrow\left(x+\frac{7}{3}\right)^2=\frac{55}{9}\Rightarrow x+\frac{7}{3}\in\left\{\sqrt{\frac{55}{9}};-\sqrt{\frac{55}{9}}\right\}\Rightarrow x\in\left\{\sqrt{\frac{55}{9}}-\frac{7}{3};-\sqrt{\frac{55}{9}}-\frac{7}{3}\right\}\)
Đề gì bn
sorry mik nhầm