Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a \(2x+2>4\\ \Leftrightarrow2\left(x+1\right)>4\\ \Leftrightarrow x+1>2\\ \Leftrightarrow x>1\)
b \(3x+2>-5\\ \Leftrightarrow3x>-7\\ \Leftrightarrow x>\dfrac{-7}{3}\)
c \(10-2x>2\\ \Leftrightarrow2\left(5-x\right)>2\\ \Leftrightarrow5-x>1\\ \Leftrightarrow-x>-4\\ \Leftrightarrow x< 4\)
d \(1-2x< 3\\ \Leftrightarrow-2x< 2\\ \Leftrightarrow2x>2\\ \Leftrightarrow x>1\)
a)2x+2>4
<=> 2x>4-2
<=>2x>2
<=>x>1
Vậy...
b)3x+2>-5
<=>3x>-5-2
<=>3x>-7
<=>x>\(\dfrac{-7}{3}\)
Vậy...
c)10-2x>2
<=>-2x>-10+2
<=>-2x>-8
<=>x<4
Vậy...
d)1-2x<3
<=>-2x<3-1
<=>-2x<2
<=>x>-1
Vậy...
e)10x+3-5\(\le\)14x+12
<=>10x-2\(\le\)14x+12
<=>10x-14x\(\le\)2+12
<=>-4x\(\le\)14
<=>x\(\ge\)\(\dfrac{-7}{2}\)
Vậy...
f)(3x-1)<2x+4
<=> 3x-2x<1+4
<=>x<5
Vậy...
ây bẹn ơi :<<<<
câu 3 ~
....
bạn vt sai chính tả ròi kìa :)) hé hé (cộng cả 2 vế của ...)
BĐT là bất đẳng thức mà, sai chỗ nào :VVVVV Miyuki Misaki
(Mk nghĩ bài 1 là 7m + 10 với 7n + 10, hoặc ngược lại, mk sẽ làm 2 TH)
1, TH1: Ta có: m < n
\(\Leftrightarrow\) 7m < 7n (nhân 2 vế của BĐT với 7)
\(\Leftrightarrow\) 7m + 10 < 7m + 10 (cộng 2 vế của BĐT với 10)
TH2: Ta có m < n
\(\Leftrightarrow\) -7m > -7n (nhân 2 vế của BĐT với -7)
\(\Leftrightarrow\) -7m + 10 > -7n + 10 (cộng 2 vế của BĐT với 10)
2, Biểu diễn bn tự làm nhé!
a, -4x + 8 \(\ge\) 0
\(\Leftrightarrow\) -4x \(\ge\) -8 (Cộng cả 2 vế của BĐT với -8)
\(\Leftrightarrow\) x \(\le\) 2 (Chia 2 vế của BĐT với -4)
b, 5 + 2x < 0
\(\Leftrightarrow\) 2x < -5 (cộng cả hai vế của BĐT với -5)
\(\Leftrightarrow\) x < \(\frac{-5}{2}\) (Chia cả hai vế của BĐT với 2)
3,
a, Ta có: 3x + 2 > 2(1 - 2x)
\(\Leftrightarrow\) 3x + 2 > 2 - 4x
\(\Leftrightarrow\) 3x > -4x (cộng cả vế cùa BĐT với -2)
\(\Leftrightarrow\) Vì 3 > -4 mà 3x > -4x
\(\Rightarrow\) x > 0 (Vì BĐT cùng chiều khi nhân x)
Vậy x > 0
b, Ta có: x - 3 < \(\frac{6-2x}{5}\)
\(\Leftrightarrow\) x - 3 < \(\frac{2\left(3-x\right)}{4}\)
\(\Leftrightarrow\) 4(x - 3) < 2(3 - x) (Nhân cả vế của BĐT với 4)
\(\Leftrightarrow\) 4(x - 3) < -2(x - 3)
Vì 4 > -2 mà 4(x - 3) < -2(x - 3)
\(\Rightarrow\) x - 3 < 0 (vì BĐT ngược chiều)
\(\Leftrightarrow\) x < 3 (Cộng cả hai vế của BĐT với 3)
Vậy x < 3
4, |-3x| = x + 6
\(\Leftrightarrow\left[{}\begin{matrix}-3x=x+6\Leftrightarrow-4x=6\Leftrightarrow x=\frac{-3}{2}\\-3x=-x-6\Leftrightarrow-2x=-6\Leftrightarrow x=3\end{matrix}\right.\)
Vậy S = {\(\frac{-3}{2}\); 3}
Chúc bn học tốt!!
9) \(\left(a+b\right)^3-\left(a-b\right)^3\)
\(=\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=b^2\left[a^2+2ab+b^2+a\left(a-b\right)+b\left(a-b\right)+a^2-2ab+b^2\right]\)
\(=b^2\left(a^2+2ab+b^2+a^2-ab+ab-b^2+a^2-2ab+b^2\right)\)
\(=b^2\left(3a^2+b^2\right)\)
10) \(\left(6x-1\right)^2-\left(3x+2\right)^2\)
\(=\left(6x-1-3x-2\right)\left(6x-1+3x+2\right)\)
\(=\left(3x-3\right)\left(9x+1\right)\)
11) \(x^2-4x^2y^2+y^2+2xy\)
\(=\left(x^2+2xy+y^2\right)-4x^2y^2\)
\(=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)
12) \(\left(x^2-25\right)^2-\left(x-5\right)^2\)
\(=\left(x^2-25-x+5\right)\left(x^2-25+x-5\right)\)
\(=\left(x^2-x-20\right)\left(x^2-30+x\right)\)
13) \(x^6-x^4+2x^3+2x^2\)
\(=x^6-x^4+2x^3+2x^2-1+1\)
\(=\left(x^6+2x^3+1\right)-\left(x^4-2x^2+1\right)\)
\(=\left[\left(x^3\right)^2+2x^3.1+1^2\right]-\left[\left(x^2\right)^2-2x^2.1+1^2\right]\)
\(=\left(x^3+1\right)^2-\left(x^2-1\right)^2\)
\(=\left(x^3+1-x^2+1\right)\left(x^3+1+x^2-1\right)\)
\(=\left(x^3-x^2+2\right)\left(x^3+x^2\right)\)
1) \(\left(x+y\right)^2-25\)
\(=\left(x+y\right)^2-5^2\)
\(=\left(x+y-5\right)\left(x+y+5\right)\)
2) \(100-\left(3x-y\right)^2\)
\(=10^2-\left(3x-y\right)^2\)
\(=\left(10-3x+y\right)\left(10+3x-y\right)\)
3) \(64x^2-\left(8a+b\right)^2\)
\(=\left(8x\right)^2-\left(8a+b\right)^2\)
\(=\left(8x-8a-b\right)\left(8x+8a+b\right)\)
4) \(4a^2b^4-c^4d^2\)
\(=\left(2ab^2\right)^2-\left(c^2d\right)^2\)
\(=\left(2ab^2-c^2d\right)\left(2ab^2+c^2d\right)\)
5) Đề đúng ko vậy ạ?
6) \(16x^3+54y^3\)
\(=2\left(8x^3+27y^3\right)\)
\(=2\left[\left(2x\right)^3+\left(3y\right)^3\right]\)
\(=2\left(2x+3y\right)\left[\left(2x\right)^2-2x.3y+\left(3y\right)^2\right]\)
\(=2\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
7) \(8x^3-y^3\)
\(=\left(2x\right)^3-y^3\)
\(=\left(2x-y\right)\left[\left(2x\right)^2+2xy+y^2\right]\)
\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
8) \(\left(a+b\right)^2-\left(2ab-b\right)^2\)
\(=\left(a+b-2ab+b\right)\left(a+b+2ab-b\right)\)
\(=\left(a+2b-2ab\right)\left(a+2ab\right)\)
1:
a: TH1: x<-3
=>-x-3+10-2x=12
=>-3x+7=12
=>-3x=5
=>x=-5/3(loại)
TH2: -3<=x<5
=>x+3+10-2x=12
=>13-x=12
=>x=1(nhận)
Th3: x>=5
=>x+3+2x-10=12
=>3x=19
=>x=19/3(nhận)
b: =>|2x|+|2x-4|=x+1
TH1: x<0
=>-2x+4-2x=x+1
=>-4x+4-x-1=0
=>-5x=-3
=>x=3/5(loại)
TH2: 0<=x<2
=>2x+4-2x=x+1
=>x=3(loại)
TH3: x>=2
=>2x+2x-4=x+1
=>3x=5
=>x=5/3(loại)