K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2020

Ta có : 

\(A+B=x^2y-xy^2+3x^2+x^2y+xy^2-2x^2-1\)

\(=2x^2y+x^2-1\)

26 tháng 2 2019

\(xy+x^2y^2+x^3y^3+x^4y^4+...+x^{10}y^{10}\)

\(=\left(xy+x^3y^3+x^5y^5+x^7y^7+x^9y^9\right)+\left(x^2y^2+x^4y^4+x^6y^6+x^8y^8+x^{10}y^{10}\right)\)

Thay x = -1; y =1,  ta có:

\(\left[\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\right]+\left(1+1+1+1+1\right)\)

\(=-5+5\)

\(=0\)

MÌNH LÀM HƠI GỘP

HOK TOT

a) Ta có: \(A=5xy-y^2+xy+4xy+3x-2y\)

\(=10xy-y^2+3x-2y\)

b) Ta có: \(\left(-\frac{1}{2}xy^2\right)\cdot\left(\frac{2}{3}x^3\right)\)

\(=\frac{-1}{3}x^4y^2\)(*)

Thay x=2 và \(y=\frac{1}{4}\) vào biểu thức (*), ta được:

\(\frac{-1}{3}\cdot2^4\cdot\left(\frac{1}{4}\right)^2\)

\(=\frac{-1}{3}\cdot16\cdot\frac{1}{16}=\frac{-1}{3}\)

Vậy: \(-\frac{1}{3}\) là giá trị của biểu thức \(\left(-\frac{1}{2}xy^2\right)\cdot\left(\frac{2}{3}x^3\right)\) tại x=2 và \(y=\frac{1}{4}\)

25 tháng 5 2020

a ) A = M + N = ( 2x2y - xy2 + 3x - 2y ) + ( 2xy2 - 2x2y - 5x + 2y )

                      =  2x2y - xy2 + 3x - 2y + 2xy2 - 2x2y - 5x + 2y 

                      =  ( 2x2y - 2x2y ) + ( -xy2 + 2xy2 ) + ( 3x - 5x ) + ( - 2y + 2y )

                      =   0 + ( -1 +2 ) xy2 + ( 3 - 5 )x + 0

                      =  xy2 - 2x

     Vậy A = M + N = xy2 - 2x

    B = N - M =  2xy2 - 2x2y - 5x + 2y - ( 2x2y - xy2 + 3x - 2y )

                    =    2xy2 - 2x2y - 5x + 2y - 2x2y + xy2 - 3x + 2y 

                    =  ( 2xy2 + xy2 ) + ( -2x2y - 2x2y ) + ( - 5x - 3x ) + (  2y + 2y )

                    =  ( 2 + 1 )xy2 + ( -2 - 2 )x2y  + ( - 5 - 3 )x  + (  2 + 2 )y 

                    =  3xy2 - 4x2y  - 8x  + 4y 

 Vậy B = 3xy2 - 4x2y  - 8x  + 4y 

7 tháng 8 2016

Câu 1:

a) \(P\left(x\right)=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\frac{1}{4}x\)

\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)

 

\(Q\left(x\right)=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\frac{1}{4}\)

\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

b) \(P\left(x\right)+Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)+\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)

\(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=\left(x^5-x^5\right)+\left(7x^4+5x^4\right)-\left(9x^3+2x^3\right)+\left(-2x^2+4x^2\right)-\frac{1}{4}x-\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}-\frac{1}{4}\)

 

\(P\left(x\right)-Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)-\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)

\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=\left(x^5+x^5\right)+\left(7x^4-5x^4\right)+\left(-9x^3+2x^3\right)-\left(2x^2+4x^2\right)-\frac{1}{4}x+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=2x^5+2x^4-7x^3-6x^2-\frac{1}{4}x+\frac{1}{4}\)

c) \(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)

\(P\left(0\right)=0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\frac{1}{4}\cdot0\)

\(P\left(0\right)=0\)

 

\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

\(Q\left(0\right)=0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\frac{1}{4}\)

\(Q\left(0\right)=-\frac{1}{4}\)

Vậy \(x=0\) là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)

 

 

2:

a: A(x)=0

=>5x-10-2x-6=0

=>3x-16=0

=>x=16/3

b: B(x)=0

=>5x^2-125=0

=>x^2-25=0

=>x=5 hoặc x=-5

c: C(x)=0

=>2x^2-x-3=0

=>2x^2-3x+2x-3=0

=>(2x-3)(x+1)=0

=>x=3/2 hoặc x=-1