- a) giai ta co (1/2.5=1/2-1/5)+(1/5.8=1/5-1/8)+....+(1/2009.2012=1/2009-1/2012) =>a=1/2-1/5+1/5-1/8+...+1/2009-1/2012 <=>1/2-1/2012 =>a=1005/2012 câu b bằng nhau nhhung minh không th
- e giải ra được
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đối với câu a thì bạn phân tích ra nha:
ta có:
A = \(\frac{-7}{10^{2005}}+\frac{-15}{10^{2006}}=\frac{-7}{10^{2005}}+\frac{-7}{10^{2006}}+\frac{-8}{10^{2006}}\)
B = \(\frac{-15}{10^{2005}}+\frac{-7}{10^{2006}}=\frac{-8}{10^{2005}}+\frac{-7}{10^{2005}}+\frac{-7}{10^{2006}}\)
vì \(\frac{8}{10^{2005}}>\frac{8}{10^{2006}}=>\frac{-8}{10^{2005}}< \frac{-8}{10^{2006}}\)
=> A > B
CÂU b mk làm phân số hơi mất thời gian nên bn thông cảm cho mk nha:
1/5*8 + 1/8*11 + 1/11*14 +...+ 1/x(x+3) = 101/1540
=> 1/5 - 1/8 + 1/8 - 1/11 + 1/11 -...+ (1/x) - (1/ x+3) = 101/1540
=>1/5 - 1/x+3 = 101/1540
=> 1/x+3 = 1/5 - 101/1540
=> 1/x+3 = 1/308
=> 308*1 = (x+3)*1
=> 308 = x+3
=> x = 308 - 3
=> x = 305
Chúc bn học tốt !
\(N=\frac{-7}{10^{2005}}+\frac{-7}{10^{2006}}+\frac{-8}{10^{2006}}\)
\(M=\frac{-7}{10^{2005}}+\frac{-8}{10^{2005}}+\frac{-7}{10^{2006}}\)
Ta xét M và N, ta có: \(\frac{-7}{10^{2005}}+\frac{-7}{10^{2006}}\text{ chung}\)
Mà: \(\frac{-8}{10^{2006}}>\frac{-8}{10^{2005}}\Rightarrow M>N\)
Ta có
\(A=\frac{-7}{10^{2005}}+\frac{-15}{10^{2006}}=\frac{-7}{10^{2005}}+\frac{-7}{10^{2006}}+\frac{-8}{10^{2006}}\)
\(B=\frac{-7}{10^{2005}}+\frac{-8}{10^{2005}}+\frac{-7}{10^{2006}}\)
Vì \(\frac{-8}{10^{2006}}>\frac{-8}{10^{2005}}\)
=>A>B
Giải
\(\frac{-7}{10^{2005}}+\frac{-15}{10^{2016}}=\frac{-7.10}{10^{2005}.10}+\frac{-15}{10^{2006}}=\frac{-70}{10^{2006}}+\frac{-15}{10^{2006}}=\frac{-85}{10^{2006}}\left(1\right).\)
\(\frac{-15}{10^{2005}}+\frac{-7}{10^{2006}}=\frac{-15.10}{10^{2005}.10}+\frac{-7}{10^{2006}}=\frac{-150}{10^{2006}}+\frac{-7}{10^{2006}}=-\frac{157}{10^{2006}}\left(2\right).\)
Từ (1) và ( 2 ) => (1) > (2)
học tốt