Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)Ta chứng minh công thức \(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\) (*)
Với n=1 (*) đúng
Giả sử (*) đúng với n=k, khi đó ta có
\(1^2+2^2+...+k^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) (1)
Ta chứng minh (1) đúng với n=k+1, từ (1) suy ra:
\(1^2+2^2+...+k^2+\left(k+1\right)^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)
\(=\left(k+1\right)\left(\frac{k\left(2k+1\right)}{6}+k+1\right)=\left(k+1\right)\frac{2k^2+7k+6}{6}\)
\(=\frac{\left(k+1\right)\left(2k^2+4k+3k+6\right)}{6}=\frac{\left(k+1\right)\left[2k\left(k+2\right)+3\left(k+2\right)\right]}{6}=\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)
Theo nguyên lí quy nạp ta có ĐPCM
Áp dụng vào bài toán ta có:
\(B=\frac{98\left(98+1\right)\left(2\cdot98+1\right)}{6}=318549\)
a)\(A=1\cdot2+2\cdot3+...+98\cdot99\)
\(3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+98\cdot99\left(100-97\right)\)
\(3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+98\cdot99\cdot100-97\cdot98\cdot99\)
\(3A=98\cdot99\cdot100=\frac{98\cdot99\cdot100}{3}=323400\)
a) C = 1.2 + 3.4 + 4.5 +...+ 99.100
\(\Rightarrow\) C = 1.2+2.3+3.4+4.5+...+99.100
\(\Rightarrow\)3C = 1.2.3+2.3.3+3.4.3+4.5.3+...+99.100.3
\(\Rightarrow\)3C = 1.2.3+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+99.100.(101-98)
\(\Rightarrow\)3C = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+99.100.101-98.99.100
\(\Rightarrow\)3C = 1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+4.5.6-4.5.6+...+99.100.101
\(\Rightarrow\)3C = 99.100.101
\(\Rightarrow C=33.100.101\)
\(\Rightarrow C=333300\)
b) D = 2 + 4 + 6 + 333 300
\(\Rightarrow\)D = 4 + 16 + 36 + 333 300
\(\Rightarrow\)D = 20 + 36 + 333 300
\(\Rightarrow\)D = 56 + 333 300
\(\Rightarrow\)D = 333 356
a, C = 1.2 + 2.3 + 3.4 + ... + 99.100
3C = 1.2.3 + 2.3.3 + 3.4.3 + .... + 99.100.3
3C = 1.2.3 + 2.3\((4-1)\)+ 3.4\((5-2)+...\)+ 99.100\((101-98)\)
3C = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
3C = 99.100.101
C = 99.100.101 :3
C = 333300
Câu b tự làm
P/S : Hoq chắc :>
1
no