Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có:
\(\left(3x+5\right)\left(11+3m\right)-7\left(x+2\right)=115\) có nghiệm x=1
Thay x = 1 vào pt ta được:
\(\left(3.1+5\right)\left(11+3m\right)-7\left(1+2\right)=115\)
\(\Leftrightarrow8\left(11+3m\right)-7.3=115\)
\(\Leftrightarrow88+24m-21=115\)
\(\Leftrightarrow88+24m=136\)
\(\Leftrightarrow24m=48\)
\(\Leftrightarrow m=2\)
Vậy để pt nhận x=1 làm nghiệm thì m = 2
2) Ta có:
\(2\left(x+n\right)\left(x+2\right)-3\left(x-1\right)\left(x^2+1\right)=15\) có nghiệm x = -1
Thay x = -1 vào pt ta được:
\(2\left(-1+n\right)\left(-1+2\right)-3\left(-1-1\right)\left[\left(-1\right)^2+1\right]=15\)
\(\Leftrightarrow\left(-2+2n\right).1+6.2=15\)
\(\Leftrightarrow-2+2n+12=15\)
\(\Leftrightarrow2n+10=15\)
\(\Leftrightarrow n=2,5\)
x-5/1990+x-15/1980+x-25/1970=x-1990/5+x-1980/15+x-1970/25
<=> (x-5/1990-1)+(x-15/1980-1)+(x-25/1970-1)=(x-1990/5-1)+(x-1980/15-1)+(x-1970/25-1)
<=> x-1995/1990+x-1995/1980+x-1995/1970=x-1995/5+x-1995/15+x-1995/25
<=> (x-1995)(1/1990+1/1980+1/1970-1/5-1/15-1/25)=0
<=> x-1995=0
<=> x=1995
\(\Leftrightarrow\left(\dfrac{x-5}{1990}-1\right)+\left(\dfrac{x-15}{1980}-1\right)+\left(\dfrac{x-25}{1970}-1\right)\\ +\left(\dfrac{x-1990}{5}-1\right)+\left(\dfrac{x-1980}{15}-1\right)+\left(\dfrac{x-1970}{25}-1\right)=0\\ \Leftrightarrow\dfrac{x-1995}{1990}+\dfrac{x-1995}{1980}+\dfrac{x-1995}{1970}+\dfrac{x-1995}{5}\\ +\dfrac{n-1995}{15}+\dfrac{n-1995}{25}=0\\ \Rightarrow\left(x-1995\right)\left(\dfrac{1}{1990}+\dfrac{1}{1980}+\dfrac{1}{1970}+\dfrac{1}{5}+\dfrac{1}{15}+\dfrac{1}{25}\right)=0\)
\(\Rightarrow x-1995=0\\ \Rightarrow x=1995\)
Ta có: \(\frac{x-5}{1990}+\frac{x-15}{1980}+\frac{x-25}{1970}=\frac{x-1990}{5}+\frac{x-1980}{15}+\frac{x-1970}{25}\)
\(\Leftrightarrow\)\(\frac{x-5}{1990}+\frac{x-15}{1980}+\frac{x-25}{1970}-3=\frac{x-1990}{5}+\frac{x-1980}{15}+\frac{x-1970}{25}-3\)
\(\Leftrightarrow\)\(\frac{x-5}{1990}-1+\frac{x-15}{1980}-1+\frac{x-25}{1970}-1=\frac{x-1990}{5}-1+\frac{x-1980}{15}-1+\frac{x-1970}{25}-1\)\(\Leftrightarrow\)\(\frac{x-1995}{1990}+\frac{x-1995}{1980}+\frac{x-1995}{1970}=\frac{x-1995}{5}+\frac{x-1995}{15}+\frac{x-1995}{25}\)
\(\Leftrightarrow\)\(\frac{x-1995}{1990}+\frac{x-1995}{1980}+\frac{x-1995}{1970}-\frac{x-1995}{5}-\frac{x-1995}{15}-\frac{x-1995}{25}=0\)
\(\Leftrightarrow\)\(\left(x-1995\right)\left(\frac{1}{1990}+\frac{1}{1980}+\frac{1}{1970}-\frac{1}{5}-\frac{1}{15}-\frac{1}{25}\right)=0\)
\(\Leftrightarrow\)\(x-1995=0\)
\(\Leftrightarrow\)\(x=1995\)
\(\dfrac{x-5}{1990}+\dfrac{x-15}{1980}=\dfrac{x-1980}{15}+\dfrac{x-1990}{5}\)
\(\Leftrightarrow(\dfrac{x-5}{1990}-1)+(\dfrac{x-15}{1980}-1)=(\dfrac{x-1980}{15}-1)+(\dfrac{x-1990}{5}-1)\)
\(\Leftrightarrow\dfrac{x-1995}{1990}+\dfrac{x-1995}{1980}-\dfrac{x-1995}{15}-\dfrac{x-1995}{5}=0\)
\(\Leftrightarrow\left(x-1995\right)\left(\dfrac{1}{1990}+\dfrac{1}{1980}-\dfrac{1}{15}-\dfrac{1}{5}\right)=0\)
\(\Leftrightarrow x-1995=0\)
\(\Leftrightarrow x=1995\)
pt <=> (x-5/1990 - 1) + (x-15/1980 - 1) = (x-1980/15 - 1) + (x-1990/5 - 1)
<=> x-1995/1990 + x-1995/1980 = x-1995/15 + x-1995/5
<=> x-1995/15 + x-1995/5 - x-1995/1990 - x-1995/1980 = 0
<=> (x-1995).(1/5+1/15-1/1990-1/1980) = 0
<=> x-1995 = 0 ( vì 1/5 + 1/15 - 1/1990 - 1/1980 > 0 )
<=> x = 1995
Vậy S={1995}
Tk mk nha
Ta có :
\(\frac{x-5}{1990}+\frac{x-15}{1980}=\frac{x-1980}{15}+\frac{x-1990}{5}\)
\(\Leftrightarrow\)\(\left(\frac{x-5}{1990}-1\right)+\left(\frac{x-15}{1980}-1\right)=\left(\frac{x-1980}{15}-1\right)+\left(\frac{x-1990}{5}-1\right)\)
\(\Leftrightarrow\)\(\frac{x-1995}{1990}+\frac{x-1995}{1980}=\frac{x-1995}{15}+\frac{x-1995}{5}\)
\(\Leftrightarrow\)\(\frac{x-1995}{1990}+\frac{x-1995}{1980}-\frac{x-1995}{15}-\frac{x-1995}{5}=0\)
\(\Leftrightarrow\)\(\left(x-1995\right)\left(\frac{1}{1990}+\frac{1}{1980}+\frac{1}{15}+\frac{1}{5}\right)=0\)
Vì \(\frac{1}{1990}+\frac{1}{1980}+\frac{1}{15}+\frac{1}{5}\ne0\)
Nên \(x-1995=0\)
\(\Rightarrow\)\(x=1995\)
Vậy \(x=1995\)
Chúc bạn học tốt ~
Ta có: \(\frac{x-5}{1990}+\frac{x-15}{1980}=\frac{x-1980}{15}+\frac{x-1990}{5}\)
=> \(\left(\frac{x-5}{1990}-1\right)+\left(\frac{x-15}{1980}-1\right)=\left(\frac{x-1980}{15}-1\right)+\left(\frac{x-1990}{5}-1\right)\)
=> \(\frac{x-5-1990}{1990}+\frac{x-15-1980}{1980}=\frac{x-1980-15}{15}+\frac{x-1990-5}{5}\)
=> \(\frac{x-1995}{1990}+\frac{x-1995}{1980}=\frac{x-1995}{15}+\frac{x-1995}{5}\)
=> \(\frac{x-1995}{1990}+\frac{x-1995}{1980}-\frac{x-1995}{15}-\frac{x-1995}{5}=0\)
=> \(\left(x-1995\right)\left(\frac{1}{1990}+\frac{1}{1980}-\frac{1}{15}-\frac{1}{5}\right)=0\)
Vì \(\frac{1}{1990}+\frac{1}{1980}\ne\frac{1}{15}+\frac{1}{5}\) => \(\frac{1}{1990}+\frac{1}{1980}-\frac{1}{15}-\frac{1}{5}\ne0\)
=> x - 1995 = 0
=> x = 1995
\(\frac{x-5}{1990}+\frac{x-15}{1980}=\frac{x-1980}{15}+\frac{x-1990}{5}\)
\(\Leftrightarrow\frac{x-5}{1990}-1+\frac{x-15}{1980}-1-\frac{x-1980}{15}+1-\frac{x-1990}{5}+1=0\)
\(\Leftrightarrow\frac{x-1995}{1990}+\frac{x-1995}{1980}-\frac{x-1995}{15}-\frac{x-1995}{5}=0\)
\(\Leftrightarrow\left(x-1995\right).\left(\frac{1}{1990}+\frac{1}{1980}-\frac{1}{15}-\frac{1}{5}\right)=0\)
<=>x=1995
\(\frac{x-5}{1990}-1+\frac{x-15}{1980}-1=\frac{x-1980}{15}-1+\frac{x-1990}{5}-1\)
\(\frac{x-1995}{1990}+\frac{x-1995}{1980}-\frac{x-1995}{15}-\frac{x-1995}{5}=0\)
\(\left(x-1995\right)\left(\frac{1}{1990}+\frac{1}{1980}-\frac{1}{15}-\frac{1}{5}\right)=0\)
Mà \(\frac{1}{1990}+\frac{1}{1980}-\frac{1}{15}-\frac{1}{5}\ne0\)
Nên \(x-1995=0\Leftrightarrow x=1995\)
b) Ta có: \(\frac{x-5}{1990}+\frac{x-15}{1980}=\frac{x-1980}{15}+\frac{x-1990}{5}\)
\(\Leftrightarrow\frac{x-5}{1990}-1+\frac{x-15}{1980}-1=\frac{x-1980}{15}-1+\frac{x-1990}{5}-1\)
\(\Leftrightarrow\frac{x-5-1990}{1990}+\frac{x-15-1980}{1980}=\frac{x-1980-15}{15}+\frac{x-1990-5}{5}\)
\(\Leftrightarrow\frac{x-1995}{1990}+\frac{x-1995}{1980}=\frac{x-1995}{15}+\frac{x-1995}{5}\)
\(\Leftrightarrow\frac{x-1995}{1990}+\frac{x-1995}{1980}-\frac{x-1995}{15}-\frac{x-1995}{5}=0\)
\(\Leftrightarrow\left(x-1995\right)\left(\frac{1}{1990}+\frac{1}{1980}-\frac{1}{15}-\frac{1}{5}\right)=0\)
mà \(\frac{1}{1990}+\frac{1}{1980}-\frac{1}{15}-\frac{1}{5}\ne0\)
nên x-1995=0
hay x=1995
Vậy: S={1995}
còn câu a?