Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+5y^2+2xy-4x-8y+2015\)
\(=x^2+2xy+y^2+4y^2-4x-8y+2015\)
\(=\left(x+y\right)^2-4\left(x+y\right)+4+4y^2-4y+2011\)
\(=\left(x+y\right)^2-2\cdot\left(x+y\right)\cdot2+2^2+\left(2y\right)^2-2\cdot2y\cdot1+1^2+2010\)
\(=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\ge2010\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y-2=0\\2y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)
Vậy.....
b) \(\frac{3\left(x+1\right)}{x^3+x^2+x+1}\)
\(=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}\)
\(=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2+1\right)}\)
\(=\frac{3}{x^2+1}\le\frac{3}{1}=3\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy....
\(a,x^2+5y^2+2xy-4x-8y+2015\)
\(=\left(x^2+y^2+2xy\right)-4\left(x+2y\right)+4+4y^2-4y+1+2015=\left[\left(x+y\right)^2-4\left(x+2y\right)+4\right]+\left(4y^2-4y+1\right)+2015\)
\(=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\)
Do.....
Nên .....
Vậy MIN = 2010 <=> x = 3/2; y = 1/2
P/S: nhương người đi sau
\(\)
1a) A = \(x^2-4x+2023=\left(x-2\right)^2+2019\)
Ta luôn có: (x - 2)2 \(\ge\)0 \(\forall\)x
=> (x - 2)2 + 2019 \(\ge\)2019 \(\forall\)x
Hay A \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra khi : (x - 2)2 = 0 => x - 2 = 0 => x = 2
Nên Amin = 2019 khi x = 2
\(A=x^2+3x+7\)
\(=x^2+2.1,5x+2,25+4,75\)
\(=\left(x+1,5\right)^2+4,75\ge4,75\)
Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)
\(B=2x^2-8x\)
\(=2\left(x^2-4x\right)\)
\(=2\left(x^2-4x+4-4\right)\)
\(=2\left[\left(x-2\right)^2-4\right]\)
\(=2\left(x-2\right)^2-8\ge-8\)
Vậy \(B_{min}=-8\Leftrightarrow x=2\)
ns thật vs c tôi ms đọc đề bài thôi đã ko hiểu j rồi ns chi đến lm giúp c. Sr nhé
a)
P = x^2 + 5y^2 + 2xy – 4x – 8y + 2015
= (x^2 + y^2 + 2xy) – 4(x + y) + 4 + 4y^2 – 4y + 1 + 2010
= (x + y – 2)^2 + (2y – 1)^2 + 2010 ≥ 2010
=> Giá trị nhỏ nhất của P = 2010 khi x = \(\frac{3}{2}\); y = \(\frac{1}{2}\)